Mekler's construction and generalized stability

Artem Chernikov

UCLA
"Automorphism Groups, Differential Galois Theory and Model Theory"
Barcelona, June 26, 2017

Joint work with Nadja Hempel (UCLA).

Mekler's construction

- Let $p>2$ be prime.
- Let T be any theory in a finite relational language.
- [Mekler'81] A uniform construction of a group $G(\mathcal{M})$ for every $\mathcal{M} \models T$, a theory T^{*} of all groups $\{G(\mathcal{M}): \mathcal{M} \vDash T\}$ and an interpretation Γ of T in T^{*} s.t.:
- T^{*} is a theory of nilpotent groups of class 2 and of exponent p,
- if $G \models T^{*}$, then $\exists \mathcal{M} \models T$ s.t. $G(\mathcal{M}) \equiv G$,
- For $\mathcal{M}, \mathcal{N} \vDash T, \mathcal{M} \equiv \mathcal{N} \Longleftrightarrow G(\mathcal{M}) \equiv G(\mathcal{N})$,
- $\Gamma(G(\mathcal{M})) \cong \mathcal{M}$.
- Idea:
- Bi-interpret \mathcal{M} with a nice graph C.
- Define a group $G(C)$ generated freely by the vertices of C, imposing that two generators commute \Longleftrightarrow they are connected by an edge in C.
- This kind of coding of graphs is known in probabilistic group theory, recursion theory, etc.

What model-theoretic properties are preserved?

- This is not a bi-interpretation (e.g., the resulting group is never ω-categorical), however some model-theoretic tameness properties are known to be preserved.
- [Mekler '81] For any cardinal $\kappa, \operatorname{Th}(\mathcal{M})$ is κ-stable \Longleftrightarrow $\operatorname{Th}(G(\mathcal{M}))$ is κ-stable.
- [Baudisch, Pentzel '02] $\operatorname{Th}(\mathcal{M})$ is simple $\Longleftrightarrow \operatorname{Th}(G(\mathcal{M}))$ is simple.
- [Baudisch '02] Assuming stability, $\operatorname{Th}(\mathcal{M})$ is CM-trivial \Longleftrightarrow $\operatorname{Th}(G(\mathcal{M}))$ is CM-trivial.
- We investigate what further properties from Shelah's classification are preserved.

k-dependent theories

- We fix a complete theory T in a language \mathcal{L}. For $k \geq 1$ we define:

Definition

[Shelah]

- A formula $\phi\left(x ; y_{1}, \ldots, y_{k}\right)$ is k-dependent if there are no infinite sets $A_{i}=\left\{a_{i, j}: j \in \omega\right\} \subseteq M_{y_{i}}, i \in\{1, \ldots, k\}$ in a model \mathcal{M} of T such that $A=\prod_{i=1}^{n} A_{i}$ is shattered by ϕ, where " A shattered" means: for any $s \subseteq \omega^{k}$, there is some $b_{s} \in M_{x}$ s.t. $M \models \phi\left(b_{s} ; a_{1, j_{1}}, \ldots, a_{k, j_{k}}\right) \Longleftrightarrow\left(j_{1}, \ldots, j_{k}\right) \in s$.
- T is k-dependent if all formulas are k-dependent.
- T is strictly k-dependent if it is k-dependent, but not ($k-1$)-dependent.
- T is 1 -dependent $\Longleftrightarrow T$ is NIP.
- 1-dependent \subsetneq 2-dependent $\subsetneq \ldots$ as witnessed by e.g. the theory of the random k-hypergraph.

k-dependent fields?

- Problem. Are there strictly k-dependent fields, for $k>1$?
- Conjecture. There are no simple strictly k-dependent fields, for $k>1$.
- [Hempel '15] Let K be an infinite field.

1. If $\operatorname{Th}(K)$ is n-dependent, then K is Artin-Schreier closed.
2. If K is a PAC field which is not separably closed, then $\operatorname{Th}(K)$ is not k-dependent for any $k \in \omega$.

- (2) is due to Parigot for $k=1$, and if K is pseudofinite, by Beyarslan K interprets the random k-hypergraph for all $k \in \omega$.

k-dependent groups

- Let T be a theory and G a type-definable group (over \emptyset), and $A \subseteq \mathbb{M}$ a small subset.
- Let G_{A}^{00} be the minimal type-definable over A subgroup of G of bounded index.

Fact
T is NIP $\Longrightarrow G_{A}^{00}=G_{\emptyset}^{00}$ for all small A.

Example

Let $G:=\bigoplus_{\omega} \mathbb{F}_{p}$. Let $\mathcal{M}:=\left(G, \mathbb{F}_{p}, 0,+, \cdot\right)$ with \cdot the bilinear form $\left(a_{i}\right) \cdot\left(b_{i}\right)=\sum_{i} a_{i} b_{i}$ from G to \mathbb{F}_{p}.
Then G is 2-dependent and $G_{A}^{00}=\left\{g \in G: \bigcap_{a \in A} g \cdot a=0\right\}$ gets smaller when enlarging A.
Fact
[Shelah] Let T be 2-dependent. Then for a suitable cardinal κ, if $\mathcal{M} \prec \mathbb{M}$ is κ-saturated and $|B|<\kappa$, then $G_{M \cup B}^{00}=G_{M}^{00} \cap G_{A \cup B}^{00}$ for some $A \subseteq M,|A|<\kappa$.

- This can be viewed as a trace of modularity.

Mekler's construction preserves k-dependence

- No examples of strictly k-dependent groups for $k>2$ were known.

Theorem
[C., Hempel '17] For any $k \in \omega$, Th (M) k-dependent

$\operatorname{Th}(G(\mathcal{M}))$ is k-dependent.

- Applying Mekler's construction to the random k-hypergraph, we get:

Corollary

For every $k \in \omega$, there is a strictly k-dependent pure group G_{k} (moreover, $\mathrm{Th}\left(G_{k}\right)$ simple by Baudisch).

A proof for NIP, 1

- For a complete theory T, its stability spectrum is the function $f_{T}(\kappa):=\sup \left\{\left|S_{1}(M)\right|: M \models T,|M|=\kappa\right\}$.
- $\operatorname{ded}(\kappa):=$ $\sup \{|I|: I$ is a linear order with a dense subset of size $\kappa\}$.

Fact

[Shelah] Let the language of T be countable.

1. If T is NIP, then $f_{T}(\kappa) \leq(\operatorname{ded} \kappa)^{\aleph_{0}}$ for all infinite cardinals κ.
2. If T has $I P$, then $f_{T}(\kappa)=2^{\kappa}$ for all infinite cardinals κ.

- Assuming GCH, ded $\kappa=2^{\kappa}$ for all κ. On the other hand:
- [Mitchell] For every cardinal κ with cf $(\kappa)>\aleph_{0}$, there is a forcing extension of the model of ZFC such that $(\operatorname{ded} \kappa)^{\aleph_{0}}<2^{\kappa}$.

A proof for NIP, 2

- The actual result in the original paper of Mekler is:

Fact
$f_{\operatorname{Th}(G(\mathcal{M}))}(\kappa) \leq f_{\operatorname{Th}(\mathcal{M})}(\kappa)+\aleph_{0}$ for all infinite cardinals κ.

- Hence if $\operatorname{Th}(\mathcal{M})$ is NIP, then $f_{\operatorname{Th}(G(\mathcal{M}))}(\kappa) \leq(\operatorname{ded} \kappa)^{\kappa_{0}}$ for all κ, in all models of ZFC.
- Combining with Mitchell and using Schoenfield's absoluteness, $\operatorname{Th}(G(\mathcal{M}))$ is NIP.
- Admittedly this is somewhat esoteric, and more importantly doesn't generalize to $k>1$.

Characterization of k-dependence

- We want a formula-free characterization of k-dependence (in Th $(G(\mathcal{M}))$ we understand automorphisms, but not formulas).
- Let $\kappa:=|T|^{+}$.

Fact

T is NIP \Longleftrightarrow for every ($\left(\right.$--)indiscernible sequence $\left(a_{i}: i \in \kappa\right)$ and b of finite tuples in \mathbb{M}, there is some $\alpha \in \kappa$ such that $\left(a_{i}: i>\alpha\right)$ is indiscernible over b.

- What is the analogue for k-dependence?

Generalized indiscernibles

- T is a theory in a language $\mathcal{L}, \mathbb{M} \models T$.

Definition

Let I be an \mathcal{L}_{0}-structure. Say that $\bar{a}=\left(a_{i}: i \in I\right)$, with a_{i} a tuple in \mathbb{M}, is I-indiscernible over $C \subseteq \mathbb{M}$ if for all i_{1}, \ldots, i_{n} and j_{1}, \ldots, j_{n} from I :

$$
\begin{aligned}
& \operatorname{qft}_{\mathcal{L}_{0}}\left(i_{1}, \ldots, i_{n}\right)=\operatorname{qft}_{\mathcal{L}_{0}}\left(j_{1}, \ldots, j_{n}\right) \Longrightarrow \\
& \operatorname{tp}_{\mathcal{L}}\left(a_{i_{1}}, \ldots, a_{i_{n}} / C\right)=\operatorname{tp}_{\mathcal{L}}\left(a_{j_{1}}, \ldots, a_{j_{n}} / C\right) .
\end{aligned}
$$

- For \mathcal{L}_{0}-structures I, J, say that $\left(b_{j}: j \in J\right)$ is based on ($a_{i}: i \in I$) over C if for any finite set Δ of $\mathcal{L}(C)$-formulas and any $\left(j_{0}, \ldots, j_{n}\right)$ from J there is some $\left(i_{1}, \ldots, i_{n}\right)$ from I s.t. $\operatorname{qft}_{\mathcal{L}_{0}}\left(j_{1}, \ldots, j_{n}\right)=\operatorname{qftp}_{\mathcal{L}_{0}}\left(i_{1}, \ldots, i_{n}\right)$ and $\operatorname{tp}_{\Delta}\left(b_{j_{1}}, \ldots, b_{j_{n}}\right)=\operatorname{tp}_{\Delta}\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$.
- We say that I-indiscernibles exist if for any \bar{a} indexed by I there is an I-indiscernible based on it.

Connection to structural Ramsey theory

- Implicitly used by Shelah already in the classification book, made explicit by Scow and others.

Definition

Let K be a class of finite \mathcal{L}_{0}-structures. For $A, B \in K$, let $\binom{B}{A}$ be the set of all $A^{\prime} \subseteq B$ s.t. $A^{\prime} \cong A$.
K is Ramsey if for any $A, B \in K$ and $k \in \omega$ there is some $C \in K$ s.t. for any coloring $f:\binom{C}{A} \rightarrow k$, there is some $B^{\prime} \in\binom{C}{B}$ s.t.
$f \upharpoonright\binom{B^{\prime}}{A}$ is constant.

- Classical Ramsey theorem \Longleftrightarrow the class of finite linear orders is Ramsey.

Fact
Let K be a Fraïssé class, and let I be its limit. If K is Ramsey, then I-indiscernibles exist.

Ordered random hypergraph indiscernibles

Fact

[Nesétril, Rödl '77,'83] For any $k \in \omega$, the class of all finite ordered k-hypergraphs is Ramsey.

- Fix $k \in \omega$. Modifying their proof, we have existence of \mathcal{G}-indiscernibles for $\mathcal{G}=\left(P_{1}, \ldots, P_{k}, R\left(x_{1}, \ldots, x_{k}\right),<\right)$ the ordered k-partite random hypergraph (where $P_{1}<\ldots<P_{k}$).
- Let $\mathcal{O}=\left(P_{1}, \ldots, P_{k},<\right)$ denote the reduct of \mathcal{G}.
- Of course, $\left(a_{g}: g \in \mathcal{G}\right)$ is \mathcal{O}-indiscernible $/ C$ implies it is \mathcal{G}-indiscernible $/ C$.
- Clarifying Shelah,

Fact
[C., Palacin, Takeuchi '14] TFAE:

1. T is k-dependent.
2. For any $\left(a_{g}: g \in \mathcal{G}\right)$ and b, with a_{g}, b finite tuples in \mathbb{M}, if $\left(a_{g}: g \in \mathcal{G}\right)$ is \mathcal{G}-indiscernible over b and \mathcal{O}-indiscernible (over $\emptyset)$, then it is \mathcal{O}-indiscernible over b.

Mekler's construction in more detail, 1

- A graph (binary, symmetric, irreflexive relation) C is nice if:
- $\exists a \neq b$,
- $\forall a \neq b \exists c(R(a, c) \wedge \neg R(b, c))$,
- no triangles or squares.

Fact
Any structure in a finite relational language is bi-interpretable with a nice graph.

- Let $G \models \operatorname{Th}(G(C))$, where $G(C)$ is generated freely by the vertices of C, and two generators commute \Longleftrightarrow they are connected by an edge in Cs.
- We consider the following \emptyset-definable equivalence relations on G, each refining the previous one:
- $g \sim h \Longleftrightarrow C_{G}(g)=C_{G}(h)$,
- $g \approx h \Longleftrightarrow \exists r \in \omega, c \in Z(G)$ s.t. $g=h^{r} c$.
- $g \equiv_{z} h \Longleftrightarrow g Z(G)=h Z(G)$.

Mekler's construction in more detail, 2

- $g \in G$ is of type q if $\exists q$-many \approx-classes in $[g]_{\sim}$.
- g is isolated if $[g]_{\approx}=[g]_{\equiv_{z}}$.
- G can be partitioned into the following \emptyset-definable set:
- non-isolated elements of type 1 - type 1^{ν},
- isolated elements of type 1 - type 1^{ι},
- elements of type p,
- elements of type $p-1$.
- For every $g \in G$ of type p, the elements of G commuting with it are:
- elements \sim-equaivalent to g,
- an element b of type 1^{ν} together with the elements \sim-equivalent to b.
- Such a b is called a handle of g, and is definable from g up to \sim-equivalence.

Mekler's construction in more detail, 3

Definition

A set $X \subseteq G$ is a transversal if $X=X_{\nu} \sqcup X_{p} \sqcup X_{\iota}$, where:

1. X_{ν} : representatives for each \sim-class of elements of type 1^{ν} in G;
2. X_{p} : representatives of \sim-classes of proper (i.e. not a product of any elements of type 1^{ν}) elements of type p, maximal with the property that if $Y \subseteq X_{p}$ is a finite of elements with the same handle, then Y is independent modulo the subgroup generated by all elements of type 1^{ν} and $Z(G)$;
3. X_{ι} : representatives of \sim-classes of proper elements of type 1^{ι}, maximal independent modulo the subgroup generated by all elements of types 1^{ν} and p in G, together with $Z(G)$.

Mekler's construction in more detail, 4

- $C=(V, R)$ is interpreted in G as $\Gamma(G)$:
- $V=\left\{g \in G: g\right.$ is of type $\left.1^{\nu}, g \notin Z(G)\right\} / \approx$,
- $\left([g]_{\approx},[h]_{\approx}\right) \in R \Longleftrightarrow g, h$ commute.
- For X a transversal of $G, \Gamma\left(X_{\nu}\right)$ is isomorphic to C.
- Let $G \models \operatorname{Th}(G(C))$ and X a transversal of G. There is a subgroup (elementary abelian p-group) H of $Z(G)$ s.t. $G \cong\langle X\rangle \times H$.
- There is some canonicity about this choice: $\langle X\rangle^{\prime}=G^{\prime}$ for any transversal X of G.

Mekler's construction in more detail, summarizing

- For any partial transversal X^{\prime} and any linearly independent over G^{\prime} subset H^{\prime} of $Z(G)$, we can find a transversal $X \supseteq X^{\prime}$ and a maximal set $H \supseteq H^{\prime}$ s.t. $G=\langle X\rangle \times\langle H\rangle$.
- Lemma. Both conditions on X^{\prime} and H^{\prime} are type-definable.
- If $Y, Z \subseteq X$ and $h: Y \rightarrow Z$ is a bijection respecting the $1^{\nu}{ }^{-}$, p-, and 1^{ι}-parts and the handles, and $\operatorname{tp}_{\Gamma}\left(Y_{\nu}\right)=\operatorname{tp}_{\Gamma}\left(h\left(Y_{\nu}\right)\right)$, then $\operatorname{tp}_{G}(Y)=\operatorname{tp}_{G}(h(Y))$.
- Moreover, assuming saturation, h extends to an automorphism of G by gluing it with any automorphism of $\langle H\rangle$.

Sketch of the proof, 1

- Let $G \vDash \operatorname{Th}(G(\mathcal{M}))$ be a monster model, and $\phi\left(x ; y_{1}, \ldots, y_{k}\right)$ not k-dependent.
- Choose a transversal X and $H \subseteq Z(G)$ s.t. $G=\langle X\rangle \times\langle H\rangle$.
- Compactness: a very large witness $\left(a_{g}: g \in \mathcal{G}\right)$ to the failure of k-dependence, shattered by ϕ.
- For cardinality reasons, may assume $a_{g}=t\left(\bar{x}_{g}, \bar{h}_{g}\right)$ for some \mathcal{L}_{G}-term t and \bar{x}_{g} from X and \bar{h}_{g} from H.
- Can close under handles and, changing the formula, replace the original shattered set by $\left(\bar{x}_{g} \bar{h}_{g}: g \in \mathcal{G}\right)$.
- Using type-definability of partial transversals, etc. and existence of \mathcal{G}-indiscernibles, can assume $\left(\bar{x}_{g} \bar{h}_{g}: g \in \mathcal{G}\right)$ is \mathcal{O}-indiscernible (possibly changing the transversal to some X^{\prime}, H^{\prime}).
- As $\left(\bar{x}_{g} \bar{h}_{g}: g \in \mathcal{G}\right)$ is shattered, can choose $b=s(\bar{y}, \bar{k}) \in G$ with $\bar{y} \in X^{\prime}, \bar{k} \in H^{\prime}$ s.t. $\phi\left(b ; y_{1}, \ldots, y_{k}\right)$ cuts out exactly the edge relation of the random k-hypergraph \mathcal{G}.

Sketch of the proof, 2

- Using existence of \mathcal{G}-indiscernibles again, can assume that $\left(\bar{x}_{g} \bar{h}_{g}: g \in \mathcal{G}\right)$ is \mathcal{G}-indiscernible over b (needs some argument, replacing X^{\prime}, H^{\prime} by some $\left.X^{\prime \prime}, H^{\prime \prime}\right)$.
- Using that $\operatorname{Th}(\langle X\rangle)$ and $\operatorname{Th}(\langle H\rangle)$ are k-dependent by assumption (hence \mathcal{G}-indiscernibility collapses to \mathcal{O}-indiscernibility in them by the characterization above), can build an automorphism of G (glueing separate automorphisms of $\left\langle X^{\prime \prime}\right\rangle$ and $\left\langle H^{\prime \prime}\right\rangle$ together by the lemma above) σ such that:
- for some finite tuples of indices \bar{g}, \bar{h} of the same type in \mathcal{O}, but not in \mathcal{G}, σ fixes b and sends $\left(\bar{x}_{g} \bar{h}_{g}: g \in \bar{g}\right)$ to $\left(\bar{x}_{h} \bar{h}_{h}: h \in \bar{h}\right)$.
- - contradiction to the choice of b.

Other results and directions

Theorem
[C., Hempel '17] Th (\mathcal{M}) is $\mathrm{NTP}_{2} \Longleftrightarrow \operatorname{Th}(G(\mathcal{M}))$ is NTP_{2}.

- Problem.
- Are there pseudofinite strictly k-dependent groups?
- Are there ω-categorical strictly k-dependent groups?

