Mekler's construction and generalized stability

Artem Chernikov

UCLA

"Automorphism Groups, Differential Galois Theory and Model Theory" Barcelona, June 26, 2017 Joint work with Nadja Hempel (UCLA).

Mekler's construction

- Let p > 2 be prime.
- ► Let *T* be any theory in a finite relational language.
- ► [Mekler'81] A uniform construction of a group G (M) for every M ⊨ T, a theory T* of all groups {G (M) : M ⊨ T} and an interpretation Γ of T in T* s.t.:
 - T^* is a theory of nilpotent groups of class 2 and of exponent p,
 - if $G \models T^*$, then $\exists \mathcal{M} \models T$ s.t. $G(\mathcal{M}) \equiv G$,
 - ► For $\mathcal{M}, \mathcal{N} \models T$, $\mathcal{M} \equiv \mathcal{N} \iff G(\mathcal{M}) \equiv G(\mathcal{N})$,
 - $\Gamma(G(\mathcal{M})) \cong \mathcal{M}.$
- Idea:
 - Bi-interpret \mathcal{M} with a *nice* graph C.
 - ▶ Define a group G(C) generated freely by the vertices of C, imposing that two generators commute ⇐⇒ they are connected by an edge in C.
- This kind of coding of graphs is known in probabilistic group theory, recursion theory, etc.

What model-theoretic properties are preserved?

- This is not a bi-interpretation (e.g., the resulting group is never ω-categorical), however some model-theoretic tameness properties are known to be preserved.
- [Mekler '81] For any cardinal κ , Th (\mathcal{M}) is κ -stable \iff Th $(\mathcal{G}(\mathcal{M}))$ is κ -stable.
- ▶ [Baudisch, Pentzel '02] Th (\mathcal{M}) is simple \iff Th $(G(\mathcal{M}))$ is simple.
- ▶ [Baudisch '02] Assuming stability, Th (\mathcal{M}) is CM-trivial \iff Th $(G(\mathcal{M}))$ is CM-trivial.
- We investigate what further properties from Shelah's classification are preserved.

k-dependent theories

► We fix a complete theory T in a language L. For k ≥ 1 we define:

Definition

[Shelah]

- A formula φ(x; y₁,..., y_k) is k-dependent if there are no infinite sets A_i = {a_{i,j} : j ∈ ω} ⊆ M_{y_i}, i ∈ {1,..., k} in a model M of T such that A = ∏ⁿ_{i=1} A_i is shattered by φ, where "A shattered" means: for any s ⊆ ω^k, there is some b_s ∈ M_x s.t. M ⊨ φ(b_s; a_{1,j1},..., a_{k,jk}) ⇔ (j₁,..., j_k) ∈ s.
- ► *T* is *k*-dependent if all formulas are *k*-dependent.
- ► T is strictly k-dependent if it is k-dependent, but not (k - 1)-dependent.
- T is 1-dependent \iff T is NIP.
- ▶ 1-dependent ⊊ 2-dependent ⊊ ... as witnessed by e.g. the theory of the random k-hypergraph.

k-dependent fields?

- ▶ **Problem.** Are there strictly *k*-dependent fields, for *k* > 1?
- ► Conjecture. There are no simple strictly k-dependent fields, for k > 1.
- [Hempel '15] Let K be an infinite field.
 - 1. If Th(K) is *n*-dependent, then K is Artin-Schreier closed.
 - If K is a PAC field which is not separably closed, then Th (K) is not k-dependent for any k ∈ ω.
- (2) is due to Parigot for k = 1, and if K is pseudofinite, by Beyarslan K interprets the random k-hypergraph for all k ∈ ω.

k-dependent groups

- ▶ Let *T* be a theory and *G* a type-definable group (over \emptyset), and $A \subseteq \mathbb{M}$ a small subset.
- ► Let G_A⁰⁰ be the minimal type-definable over A subgroup of G of bounded index.

Fact

T is NIP
$$\implies$$
 $G_A^{00} = G_{\emptyset}^{00}$ for all small A.

Example

Let $G := \bigoplus_{\omega} \mathbb{F}_{p}$. Let $\mathcal{M} := (G, \mathbb{F}_{p}, 0, +, \cdot)$ with \cdot the bilinear form $(a_{i}) \cdot (b_{i}) = \sum_{i} a_{i}b_{i}$ from G to \mathbb{F}_{p} . Then G is 2-dependent and $G_{A}^{00} = \{g \in G : \bigcap_{a \in A} g \cdot a = 0\}$ — gets smaller when enlarging A.

Fact

[Shelah] Let T be 2-dependent. Then for a suitable cardinal κ , if $\mathcal{M} \prec \mathbb{M}$ is κ -saturated and $|B| < \kappa$, then $G_{M \cup B}^{00} = G_M^{00} \cap G_{A \cup B}^{00}$ for some $A \subseteq M$, $|A| < \kappa$.

This can be viewed as a trace of modularity.

Mekler's construction preserves k-dependence

No examples of strictly k-dependent groups for k > 2 were known.

Theorem

[C., Hempel '17] For any $k \in \omega$, Th (\mathcal{M}) k-dependent \iff Th $(\mathcal{G}(\mathcal{M}))$ is k-dependent.

Applying Mekler's construction to the random k-hypergraph, we get:

Corollary

For every $k \in \omega$, there is a strictly k-dependent pure group G_k (moreover, $Th(G_k)$ simple by Baudisch).

A proof for NIP, 1

- For a complete theory *T*, its *stability spectrum* is the function $f_T(\kappa) := \sup \{ |S_1(M)| : M \models T, |M| = \kappa \}.$
- ► ded (κ) := sup {|I| : I is a linear order with a dense subset of size κ}.

Fact

[Shelah] Let the language of T be countable.

- 1. If T is NIP, then $f_T(\kappa) \leq (\text{ded } \kappa)^{\aleph_0}$ for all infinite cardinals κ .
- 2. If T has IP, then $f_T(\kappa) = 2^{\kappa}$ for all infinite cardinals κ .
- Assuming GCH, ded $\kappa = 2^{\kappa}$ for all κ . On the other hand:
- [Mitchell] For every cardinal κ with cf (κ) > ℵ₀, there is a forcing extension of the model of ZFC such that (ded κ)^{ℵ₀} < 2^κ.

A proof for NIP, 2

• The actual result in the original paper of Mekler is:

Fact

 $f_{\mathsf{Th}(G(\mathcal{M}))}(\kappa) \leq f_{\mathsf{Th}(\mathcal{M})}(\kappa) + \aleph_0$ for all infinite cardinals κ .

- Hence if Th (M) is NIP, then f_{Th(G(M))} (κ) ≤ (ded κ)^{ℵ₀} for all κ, in all models of ZFC.
- ► Combining with Mitchell and using Schoenfield's absoluteness, Th (G (M)) is NIP.
- Admittedly this is somewhat esoteric, and more importantly doesn't generalize to k > 1.

Characterization of k-dependence

We want a formula-free characterization of k-dependence (in Th (G (M)) we understand automorphisms, but not formulas).
 Let κ := |T|⁺.

Fact

T is NIP \iff for every (\emptyset -)indiscernible sequence ($a_i : i \in \kappa$) and *b* of finite tuples in \mathbb{M} , there is some $\alpha \in \kappa$ such that ($a_i : i > \alpha$) is indiscernible over *b*.

▶ What is the analogue for *k*-dependence?

Generalized indiscernibles

• T is a theory in a language \mathcal{L} , $\mathbb{M} \models T$.

Definition

Let *I* be an \mathcal{L}_0 -structure. Say that $\bar{a} = (a_i : i \in I)$, with a_i a tuple in \mathbb{M} , is *I*-indiscernible over $C \subseteq \mathbb{M}$ if for all i_1, \ldots, i_n and j_1, \ldots, j_n from *I*:

$$\begin{aligned} \mathsf{qftp}_{\mathcal{L}_0}\left(i_1,\ldots,i_n\right) &= \mathsf{qftp}_{\mathcal{L}_0}\left(j_1,\ldots,j_n\right) \implies \\ \mathsf{tp}_{\mathcal{L}}\left(a_{i_1},\ldots,a_{i_n}/\mathcal{C}\right) &= \mathsf{tp}_{\mathcal{L}}\left(a_{j_1},\ldots,a_{j_n}/\mathcal{C}\right). \end{aligned}$$

- For L₀-structures *I*, *J*, say that (b_j : j ∈ J) is based on (a_i : i ∈ I) over C if for any finite set Δ of L(C)-formulas and any (j₀,..., j_n) from J there is some (i₁,..., i_n) from I s.t. qftp_{L₀} (j₁,..., j_n) = qftp_{L₀} (i₁,..., i_n) and tp_Δ (b_{j1},..., b_{jn}) = tp_Δ (a_{i1},..., a_{in}).
- We say that *I-indiscernibles exist* if for any ā indexed by I there is an *I*-indiscernible based on it.

Connection to structural Ramsey theory

 Implicitly used by Shelah already in the classification book, made explicit by Scow and others.

Definition

Let K be a class of finite \mathcal{L}_0 -structures. For $A, B \in K$, let $\binom{B}{A}$ be the set of all $A' \subseteq B$ s.t. $A' \cong A$. K is Ramsey if for any $A, B \in K$ and $k \in \omega$ there is some $C \in K$ s.t. for any coloring $f : \binom{C}{A} \to k$, there is some $B' \in \binom{C}{B}$ s.t. $f \upharpoonright \binom{B'}{A}$ is constant.

 Classical Ramsey theorem <i>the class of finite linear orders is Ramsey.

Fact

Let K be a Fraïssé class, and let I be its limit. If K is Ramsey, then I-indiscernibles exist.

Ordered random hypergraph indiscernibles

Fact

[Nesétril, Rödl '77, '83] For any $k \in \omega$, the class of all finite ordered k-hypergraphs is Ramsey.

- Fix k ∈ ω. Modifying their proof, we have existence of G-indiscernibles for G = (P₁,..., P_k, R (x₁,..., x_k), <) the ordered k-partite random hypergraph (where P₁ < ... < P_k).
- Let $\mathcal{O} = (P_1, \ldots, P_k, <)$ denote the reduct of \mathcal{G} .
- ▶ Of course, (a_g : g ∈ G) is O-indiscernible /C implies it is G-indiscernible /C.
- Clarifying Shelah,

Fact

[C., Palacin, Takeuchi '14] TFAE:

1. T is k-dependent.

 For any (a_g : g ∈ G) and b, with a_g, b finite tuples in M, if (a_g : g ∈ G) is G-indiscernible over b and O-indiscernible (over Ø), then it is O-indiscernible over b.

- A graph (binary, symmetric, irreflexive relation) C is nice if:
 - ∃a ≠ b,
 - ► $\forall a \neq b \exists c (R(a,c) \land \neg R(b,c)),$
 - no triangles or squares.

Fact

Any structure in a finite relational language is bi-interpretable with a nice graph.

- Let G ⊨ Th (G (C)), where G (C) is generated freely by the vertices of C, and two generators commute ⇐⇒ they are connected by an edge in Cs.
- We consider the following Ø-definable equivalence relations on G, each refining the previous one:

▶
$$g \sim h \iff C_G(g) = C_G(h),$$

▶ $g \approx h \iff \exists r \in \omega, c \in Z(G) \text{ s.t. } g = h^r c.$
▶ $g \equiv_Z h \iff gZ(G) = hZ(G).$

- $g \in G$ is of type q if $\exists q$ -many \approx -classes in $[g]_{\sim}$.
- g is isolated if $[g]_{\approx} = [g]_{\equiv_Z}$.
- G can be partitioned into the following \emptyset -definable set:
 - non-isolated elements of type 1 type 1^{ν} ,
 - ▶ isolated elements of type 1 type 1^ℓ,
 - elements of type p,
 - elements of type p 1.
- For every $g \in G$ of type p, the elements of G commuting with it are:
 - elements ~-equaivalent to g,
 - ► an element b of type 1^ν together with the elements ~-equivalent to b.
- ► Such a b is called a handle of g, and is definable from g up to ~-equivalence.

Definition

A set $X \subseteq G$ is a *transversal* if $X = X_{\nu} \sqcup X_{\rho} \sqcup X_{\iota}$, where:

- 1. X_{ν} : representatives for each \sim -class of elements of type 1^{ν} in G;
- 2. X_p : representatives of \sim -classes of *proper* (i.e. not a product of any elements of type 1^{ν}) elements of type p, maximal with the property that if $Y \subseteq X_p$ is a finite of elements with the same handle, then Y is independent modulo the subgroup generated by all elements of type 1^{ν} and Z(G);
- X_i: representatives of ~-classes of proper elements of type 1ⁱ, maximal independent modulo the subgroup generated by all elements of types 1^ν and p in G, together with Z (G).

- C = (V, R) is interpreted in G as $\Gamma(G)$:
 - $V = \{g \in G : g \text{ is of type } 1^{\nu}, g \notin Z(G)\} / \approx$,
 - $([g]_{\approx}, [h]_{\approx}) \in R \iff g, h \text{ commute.}$
- For X a transversal of G, $\Gamma(X_{\nu})$ is isomorphic to C.
- Let G ⊨ Th (G (C)) and X a transversal of G. There is a subgroup (elementary abelian p-group) H of Z (G) s.t. G ≅ ⟨X⟩ × H.
- ► There is some canonicity about this choice: (X)' = G' for any transversal X of G.

Mekler's construction in more detail, summarizing

- For any partial transversal X' and any linearly independent over G' subset H' of Z(G), we can find a transversal X ⊇ X' and a maximal set H ⊇ H' s.t. G = ⟨X⟩ × ⟨H⟩.
- **Lemma.** Both conditions on X' and H' are type-definable.
- ▶ If $Y, Z \subseteq X$ and $h: Y \to Z$ is a bijection respecting the 1^{*ν*}-, *p*-, and 1^{*ι*}-parts and the handles, and $tp_{\Gamma}(Y_{\nu}) = tp_{\Gamma}(h(Y_{\nu}))$, then $tp_{G}(Y) = tp_{G}(h(Y))$.
- Moreover, assuming saturation, h extends to an automorphism of G by gluing it with any automorphism of $\langle H \rangle$.

Sketch of the proof, 1

- ► Let $G \models \text{Th}(G(\mathcal{M}))$ be a monster model, and $\phi(x; y_1, \ldots, y_k)$ not *k*-dependent.
- Choose a transversal X and $H \subseteq Z(G)$ s.t. $G = \langle X \rangle \times \langle H \rangle$.
- Compactness: a very large witness (a_g : g ∈ G) to the failure of k-dependence, shattered by φ.
- ► For cardinality reasons, may assume $a_g = t(\bar{x}_g, \bar{h}_g)$ for some \mathcal{L}_G -term t and \bar{x}_g from X and \bar{h}_g from H.
- ► Can close under handles and, changing the formula, replace the original shattered set by (x̄_g h̄_g : g ∈ G).
- ▶ Using type-definability of partial transversals, etc. and existence of \mathcal{G} -indiscernibles, can assume $(\bar{x}_g \bar{h}_g : g \in \mathcal{G})$ is \mathcal{O} -indiscernible (possibly changing the transversal to some X', H').
- ▶ As $(\bar{x}_g \bar{h}_g : g \in \mathcal{G})$ is shattered, can choose $b = s(\bar{y}, \bar{k}) \in G$ with $\bar{y} \in X', \bar{k} \in H'$ s.t. $\phi(b; y_1, \dots, y_k)$ cuts out *exactly* the edge relation of the random k-hypergraph \mathcal{G} .

Sketch of the proof, 2

- ▶ Using existence of \mathcal{G} -indiscernibles again, can assume that $(\bar{x}_g \bar{h}_g : g \in \mathcal{G})$ is \mathcal{G} -indiscernible over b (needs some argument, replacing X', H' by some X'', H'').
- Using that Th ((X)) and Th ((H)) are k-dependent by assumption (hence G-indiscernibility collapses to O-indiscernibility in them by the characterization above), can build an automorphism of G (glueing separate automorphisms of (X") and (H") together by the lemma above) σ such that:
- ▶ for some finite tuples of indices \bar{g} , \bar{h} of the same type in \mathcal{O} , but **not** in \mathcal{G} , σ fixes b and sends $(\bar{x}_g \bar{h}_g : g \in \bar{g})$ to $(\bar{x}_h \bar{h}_h : h \in \bar{h})$.
- contradiction to the choice of b.

Other results and directions

Theorem

 $[C., Hempel '17] \operatorname{Th} (\mathcal{M}) \text{ is } \operatorname{NTP}_2 \iff \operatorname{Th} (G(\mathcal{M})) \text{ is } \operatorname{NTP}_2.$

- Problem.
 - ► Are there pseudofinite strictly *k*-dependent groups?
 - Are there ω-categorical strictly k-dependent groups?