Recognizing groups and fields in Erdős geometry and model theory

Artem Chernikov

UCLA

“From Geometric Stability Theory to Tame Geometry”
Fields Institute, Toronto, Canada, 15 Dec 2021
The \textit{trichotomy principle} in model theory: in a sufficiently tame context (certain strongly minimal, o-minimal), every structure is either “trivial”, or essentially a vector space (“modular”), or interprets a field.

Asymptotic sizes of the intersections of definable sets with finite grids in certain model-theoretically tame contexts reflect the trichotomy principle, and detect presence of algebraic structures (groups, fields).

Instances of this principle are well-known in combinatorics — extremal configuration for various counting problems tend to come from algebraic structures. Here we discuss “inverse” theorems which show this is the only way.
Sum-product and expander polynomials

- [Erdős, Szemerédi’83] There exists some $c \in \mathbb{R}_{>0}$ such that: for every finite $A \subseteq \mathbb{R}$,
 $$\max \{ |A + A|, |A \cdot A| \} = \Omega \left(|A|^{1+c} \right).$$

- [Solymosi], [Konyagin, Shkredov] Holds with $\frac{4}{3} + \varepsilon$ for some sufficiently small $\varepsilon > 0$. (Conjecturally: with $2 - \varepsilon$ for any ε).

- [Elekes, Rónyai’00] Let $f \in \mathbb{R}[x, y]$ be a polynomial of degree d, then for all $A, B \subseteq \mathbb{R}$,
 $$|f(A \times B)| = \Omega_d \left(n^{\frac{4}{3}} \right),$$

 unless f is either of the form $g(h(x) + i(y))$ or $g(h(x) \cdot i(y))$ for some univariate polynomials g, h, i.
Elekes-Szabó theorem

[Elekes-Szabó’12] provide a conceptual generalization: for any algebraic surface $R(x_1, x_2, x_3) \subseteq \mathbb{R}^3$ so that the projection onto any two coordinates is finite-to-one, exactly one of the following holds:

1. there exists $\gamma > 0$ s.t. for any finite $A_i \subseteq \mathbb{R}$ we have

 $$|R \cap (A_1 \times A_2 \times A_3)| = O(n^{2-\gamma}).$$

2. There exist open sets $U_i \subseteq \mathbb{R}$ and $V \subseteq \mathbb{R}$ containing 0, and analytic bijections with analytic inverses $\pi_i : U_i \to V$ such that

 $$\pi_1(x_1) + \pi_2(x_2) + \pi_3(x_3) = 0 \iff R(x_1, x_2, x_3)$$

 for all $x_i \in U_i$.
Generalizations of the Elekes-Szabó theorem

Let $R \subseteq X_1 \times \ldots \times X_r$ be an algebraic surface (or just a definable set) with finite-to-one projection onto any $r - 1$ coordinates and $\dim(X_i) = m$.

1. [Elekes, Szabó’12] $r = 3$, m arbitrary over \mathbb{C} (only count on grids in general position, correspondence with a complex algebraic group of dimension m);
2. [Raz, Sharir, de Zeeuw’18] $r = 4$, $m = 1$ over \mathbb{C};
3. [Raz, Shem-Tov’18] $m = 1$, R of the form $f(x_1, \ldots, x_{r-1}) = x_r$ for any r over \mathbb{C}.
4. [Hrushovski’13] Pseudofinite dimension, modularity
5. [Bays, Breuillard’18] r and m arbitrary over \mathbb{C}, recognized that the arising groups are abelian (no bounds on γ);
6. Related work: [Raz, Sharir, de Zeeuw’15], [Wang’15]; [Bukh, Tsimmerman’ 12], [Tao’12]; [Jing, Roy, Tran’19].
7. [C., Peterzil, Starchenko] Any r and m, any o-minimal structure or stable with a distal expansion and explicit bounds on γ. A special case:
One-dimensional \(o \)-minimal case

Theorem (C., Peterzil, Starchenko)

Assume \(r \geq 3 \), \(\mathcal{M} \) is an \(o \)-minimal expansion of \(\mathbb{R} \) and \(R \subseteq \mathbb{R}^r \) is definable, such that the projection of \(R \) to any \(r-1 \) coordinates is finite-to-one. Then exactly one of the following holds.

1. For any finite \(A_i \subseteq \mathbb{R} \), \(i \in [r] \), we have

\[
|R \cap (A_1 \times \ldots \times A_r)| = O_{\mathcal{M}} \left(n^{r-1-\gamma}\right),
\]

where \(\gamma = \frac{1}{3} \) if \(r \geq 4 \), and \(\gamma = \frac{1}{6} \) if \(r = 3 \).

2. There exist open sets \(U_i \subseteq \mathbb{R} \), \(i \in [r] \), an open set \(V \subseteq \mathbb{R} \) containing 0, and homeomorphisms \(\pi_i : U_i \to V \) such that

\[
\pi_1(x_1) + \cdots + \pi_r(x_r) = 0 \iff R(x_1, \ldots, x_r)
\]

for all \(x_i \in U_i \), \(i \in [r] \).
General o-minimal case

Theorem (C., Peterzil, Starchenko)

Let \mathcal{M} be an o-minimal expansion of \mathbb{R}. Assume $r \geq 3$, $R \subseteq X_1 \times \cdots \times X_r$ are definable with $\dim (X_i) = m$, and the projection of R to any $r - 1$ coordinates is finite-to-one. Then exactly one of the following holds.

1. For any finite $A_i \subseteq X_i$ in general position, $i \in [r]$, we have

$$|R \cap (A_1 \times \cdots \times A_r)| = O_R \left(n^{r-1-\gamma} \right),$$

for $\gamma = \frac{1}{8m-5}$ if $s \geq 4$, and $\gamma = \frac{1}{16m-10}$ if $s = 3$.

2. There exist definable relatively open sets $U_i \subseteq X_i$, $i \in [s]$, an abelian Lie group $(G, +)$ of dimension m and an open neighborhood $V \subseteq G$ of 0, and definable homeomorphisms $\pi_i : U_i \to V$, $i \in [s]$, such that for all $x_i \in U_i$, $i \in [s]$

$$\pi_1(x_1) + \cdots + \pi_s(x_s) = 0 \Leftrightarrow R(x_1, \ldots, x_s).$$
Remarks

1. If \mathcal{M} is o-minimal but is not elementarily equivalent to an expansion of \mathbb{R} — only get correspondence with a type-definable group.

2. One ingredient — “Szémeredi-Trotter”-style bounds in o-minimal, and more generally distal structures.

3. Another — a higher arity generalization of the Abelian Group Configuration theorem of Zilber and Hrushovski on recognizing groups from a “generic chunk”, along with a purely combinatorial version.
First ingredient: Recognizing groups, 1

1. Assume that \((G, +, 0)\) is an abelian group, and consider the \(r\)-ary relation \(R \subseteq \prod_{i \in [r]} G\) given by \(x_1 + \ldots + x_r = 0\).

2. Then \(R\) is easily seen to satisfy the following two properties, for any permutation of the variables of \(R\):

\[
\forall x_1, \ldots, \forall x_{r-1} \exists! x_r R(x_1, \ldots, x_r), \tag{P1}
\]

\[
\forall x_1, x_2 \forall y_3, \ldots y_r \forall y'_3, \ldots, y'_r \left(R(\bar{x}, \bar{y}) \land R(\bar{x}, \bar{y}') \rightarrow \left(\forall x'_1, x'_2 R(\bar{x}', \bar{y}) \leftrightarrow R(\bar{x}', \bar{y}'))) \right). \tag{P2}
\]

We show a converse, assuming \(r \geq 4\):
Recognizing groups, 2

Theorem (C., Peterzil, Starchenko)

Assume \(r \in \mathbb{N}_{\geq 4}, X_1, \ldots, X_r \) and \(R \subseteq \prod_{i \in [r]} X_i \) are sets, so that \(R \) satisfies (P1) and (P2) for any permutation of the variables. Then there exists an abelian group \((G, +, 0_G)\) and bijections \(\pi_i : X_i \rightarrow G \) such that for every \((a_1, \ldots, a_r) \in \prod_{i \in [r]} X_i\) we have

\[
R(a_1, \ldots, a_r) \iff \pi_1(a_1) + \ldots + \pi_r(a_r) = 0_G.
\]

- If \(X_1 = \ldots = X_r \), property (P1) is equivalent to saying that the relation \(R \) is an \((r-1)\)-dimensional permutation on the set \(X_1 \), or a Latin \((r-1)\)-hypercube, as studied by Linial and Luria. Thus the condition (P2) characterizes, for \(r \geq 3 \), those Latin \(r \)-hypercubes that are given by the relation “\(x_1 + \ldots + x_{r-1} = x_r \)” in an abelian group.

- If \(R \) is definable and \(X_i \) are type-definable in a (saturated) \(M \), then \(G \) is type-definable and \(\pi_i \) are relatively definable in \(M \).
Recognizing groups in the stable case

- In the stable version of our theorem, we only get “generic correspondence” with a type-definable group.
- An r-gon is a tuple a_1, \ldots, a_r such that any $r - 1$ of its elements are (forking-)independent, and any element in it is in the algebraic closure of the other ones.
- An r-gon is abelian if, after any permutation of its elements, we have $a_1 a_2 \downarrow_{\text{acl}(a_1 a_2) \cap \text{acl}(a_3 \ldots a_r)} a_3 \ldots a_r$.
- If (G, \cdot) is a type-definable abelian group, g_1, \ldots, g_{r-1} are independent generics in G and $g_r := g_1 \cdot \ldots \cdot g_{r-1}$, then g_1, \ldots, g_r is an abelian r-gon (associated to G).
- Conversely,

Theorem (C., Peterzil, Starchenko; independently Hrushovski)

Let $r \geq 4$ and a_1, \ldots, a_r be an abelian r-gon. Then there is a type-definable (in \mathcal{M}^{eq}) connected abelian group (G, \cdot) and an abelian r-gon g_1, \ldots, g_s associated to G, such that after a base change each g_i is interalgebraic with a_i.
Second ingredient: distality

Definition
A structure \mathcal{M} is *distal* if and only if for every definable family $\{\varphi(x, b) : b \in M_y\}$ of subsets of M_x there is a definable family $\{\theta(x, c) : c \in M^k_y\}$ such that for every $a \in M_x$ and every finite set $B \subset M_y$ there is some $c \in B^k$ such that:

- $a \models \theta(x, c)$;
- $\theta(x, c) \vdash \text{tp}_{\varphi}(a/B)$, that is for every $a' \models \theta(x, c)$ and $b \in B$ we have $a' \models \phi(x, b) \iff a \models \phi(x, b)$.
Examples of distal structures

- \mathcal{M} distal $\implies \mathcal{M}$ is NIP, unstable.
- Examples of distal structures: (weakly) o-minimal structures, various valued fields of char 0 (e.g. \mathbb{Q}_p, RCVF, the valued differential field of transseries).
- Stable structures with distal expansions: ACF_0, $\text{DCF}_{0,m}$, CCM, abelian groups, Hrushovski constructions*.
- Stable structures without distal expansions: ACF_p [C., Starchenko’15], a disjoint union of finite expander graphs (e.g. Ramanujan graphs) of growing degree and expansion [Jiang, Nesetril, Ossona de Mendez, Siebertz’20].
- **Problem.** Do non-abelian free groups have distal expansions?
Number of edges in a $K_{k,\ldots,k}$-free hypergraph

- The following fact is due to [Kővári, Sós, Turán’54] for $r = 2$ and [Erdős’64] for general r.

Fact (The Basic Bound)

If H is a $K_{k,\ldots,k}$-free r-hypergraph then $|E| = O_{r,k} \left(n^r - \frac{1}{k^r-1}\right)$.

- So the exponent is slightly better than the maximal possible r (we have n^r edges in $K_{n,\ldots,n}$). A probabilistic construction in [Erdős’64] shows that it cannot be substantially improved.
Bounds for graphs definable in distal structures

Generalizing [Fox, Pach, Sheffer, Suk, Zahl’15] in the semialgebraic case, we have:

Fact (C., Galvin, Starchenko’16)

Let \mathcal{M} be a distal structure and $R \subseteq M_{x_1} \times M_{x_2}$ a definable relation. Then there exists some $\varepsilon = \varepsilon(R, k) > 0$ such that for any $A_1 \subseteq_n M_{x_1}, A_2 \subseteq_n M_{x_2}$, if $E := R \cap (A_1 \times A_2)$ is $K_{k,k}$-free then $|E| = O_{R,k}(n^{t-\varepsilon})$, where t is the exponent given by the Basic Bound for arbitrary graphs.

In fact, ε is given in terms of k and the size of the smallest distal cell decomposition for R.

E.g. if $R \subseteq M^2 \times M^2$ for an o-minimal \mathcal{M}, then $t - \varepsilon = \frac{4}{3}$ ([C., Galvin, Starchenko’16]; independently, [Basu, Raz’16]).
Recognizing fields

For the semialgebraic \(K_{2,2}\)-free point-line incidence relation \(R = \{(x_1, x_2; y_1, y_2) \in \mathbb{R}^4 : x_2 = y_1x_1 + y_2\} \subseteq \mathbb{R}^2 \times \mathbb{R}^2 \) we have the (optimal) lower bound \(|R \cap (V_1 \times V_2)| = \Omega(n^{4/3})\).

To define it we use both addition and multiplication, i.e. the field structure.

This is not a coincidence — any non-trivial lower bound on the Zarankiewicz exponent of \(R \) allows to recover a field from it:

Theorem (Basit, C., Starchenko, Tao, Tran)

Assume that \(\mathcal{M} = (M, <, \ldots) \) is \(o \)-minimal and \(R \subseteq M_{x_1} \times \ldots \times M_{x_r} \) is a definable relation which is \(K_{k,\ldots,k} \)-free, but \(|R \cap \prod_{i \in [r]} V_i| \neq O(n^{r-1})\) for \(V_i \subseteq_n M_{x_i} \). Then a real closed field is definable in the first-order structure \((M, <, R)\).
Ingredients

- An (almost) optimal bound on the number of edges in $K_{k,...,k}$-free hypergraphs definable in locally modular o-minimal expansions of groups, so e.g. for semilinear ($= \text{definable in } (\mathbb{R}, <, +)$) hypergraphs.

- The trichotomy theorem for o-minimal structures [Peterzil, Starchenko’98].
A matroid associated to an o-minimal structure

- Given a structure M, $A \subseteq M$ and a finite tuple a in M, $a \in \text{acl}(A)$ if it belongs to some finite A-definable subset of $M^{\mid a\mid}$ (this generalizes linear span in vector spaces and algebraic closure in fields).
- $\dim(a/A)$ is the minimal cardinality of a subtuple a' of a so that $\text{acl}(a \cup A) = \text{acl}(a' \cup A)$ (in an algebraically closed field, this is just the transcendence degree of a over the field generated by A).
- Given a finite tuple a and sets $C, B \subseteq M$, we write $a \downarrow_C B$ to denote that $\dim(a/BC) = \dim(a/C)$.
- In an o-minimal structure, \downarrow is a well-behaved notion of independence defining a matroid.
Local modularity

An o-minimal structure is (weakly) locally modular if for any small subsets $A, B \subseteq M \models T$ there exists some small set $C \downarrow_{\emptyset} AB$ such that $A \downarrow_{\text{acl}(AC) \cap \text{acl}(BC)} B$.

Intuition: the algebraic closure operator behaves like the linear span in a vector space, as opposed to the algebraic closure in an algebraically closed field.

In particular, an o-minimal structure is locally modular if and only if any normal interpretable family of plane curves in T has dimension ≤ 1.
Theorem (Basit, C., Starchenko, Tao, Tran)

Let \(\mathcal{M} \) be an o-minimal locally modular expansion of a group and \(Q \) a definable relation of arity \(r \geq 2 \). Then for any \(\varepsilon > 0 \) and any \(V_i \) with \(|V_i| = n \) such that \(E := Q \cap V_1 \times \ldots \times V_r \) is \(K_{k,\ldots,k} \)-free, we have

\[
|E| = O_{Q,k,\varepsilon} \left(n^{r-1+\varepsilon} \right).
\]

Moreover, if \(Q \) itself is \(K_{k,\ldots,k} \)-free, then for any \(V_i \) with \(|V_i| = n \) we have

\[
|E| = O_{Q} \left(n^{r-1} \right).
\]
Recovering a field in the o-minimal case

Fact (Peterzil, Starchenko’98)

Let \mathcal{M} be an o-minimal (saturated) structure. TFAE:

- \mathcal{M} is not locally modular;
- there exists a real closed field definable in \mathcal{M}.

- [Marker, Peterzil, Pillay’92] Let $X \subseteq \mathbb{R}^n$ be a semialgebraic but not semilinear set. Then $\cdot \upharpoonright_{[0,1]^2}$ is definable in $(\mathbb{R}, <, +, X)$. In particular, it is not locally modular.

- Combining this with the optimal bound in the locally modular case, we get the result.

- Problem: is it possible to establish a more direct correspondence between the relation with many edges and the point-line incidence relation in a field?
An application to incidences with polytopes

Applying with $r = 2$ we get the following:

Corollary

For every $s, k \in \mathbb{N}$ there exists some $\alpha = \alpha(s, k) \in \mathbb{R}$ satisfying the following.
Let $d \in \mathbb{N}$ and $H_1, \ldots, H_q \subseteq \mathbb{R}^d$ be finitely many (closed or open) half-spaces in \mathbb{R}^d. Let \mathcal{F} be the (infinite) family of all polytopes in \mathbb{R}^d cut out by arbitrary translates of H_1, \ldots, H_q.
For any set V_1 of n_1 points in \mathbb{R}^d and any set V_2 of n_2 polytopes in \mathcal{F}, if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$-free, then it contains at most $\alpha n (\log n)^q$ incidences.

In particular (this corollary was obtained independently by [Tomon, Zakharov]):

Corollary

For any set V_1 of n_1 points and any set V_2 of n_2 (solid) boxes with axis parallel sides in \mathbb{R}^d, if the incidence graph on $V_1 \times V_2$ is $K_{k,k}$-free, then it contains at most $O_{d,k} \left(n(\log n)^{2d}\right)$ incidences.
Dyadic rectangles and a lower bound

- Is the logarithmic factor necessary?
- We focus on the simplest case of incidences with rectangles with axis-parallel sides in \mathbb{R}^2. The previous corollary gives the bound $O_{d,k}(n(\log n)^4)$.
- A box is dyadic if it is the direct products of intervals of the form $[s2^t, (s+1)2^t)$ for some integers s, t.
- Using a different argument, restricting to dyadic boxes we get a stronger upper bound $O\left(n\frac{\log n_1}{\log \log n_1}\right)$, and give a construction showing a matching lower bound (up to a constant).
- [Tomon, Zakharov] use our construction to disprove a conjecture of Alon, Basavaraju, Chandran, Mathew, and Rajendraaprasad regarding the maximal possible number of edges in a graph of bounded separation dimension.

Problem

What is the optimal bound on the power of $\log n$? In particular, does it have to grow with the dimension d?
Thank you!

from MSP, a new journal in pure and applied model theory and related areas

Martin Hils
Rahim Moosa
Sylvy Anscombe
Alessandro Berarducci
Emmanuel Breuillard
Artem Chernikov
Charlotte Hardouin
François Loeser
Dugald Macpherson
Alf Onshuus
Chloé Perin

msp.org/mt
now welcoming submissions