Keisler randomization and n-dependent theories

Artem Chernikov

UCLA

“Model Theory and Philosophy of Mathematics”, Fudan University, Shanghai, China (via Zoom)
Aug 22, 2021
Joint work with Henry Towsner (University of Pennsylvania).
Continuous logic

- Ben Yaacov, Berenstein, Henson, Usvyatsov “Model theory for metric structures” (earlier variants by Chang-Keisler, Henson, ...).

- Every structure $\mathcal{M} = (M, \ldots)$ is a complete metric space of bounded diameter, with a metric d.

- Signature:
 - function symbols with given moduli of uniform continuity (interpreted as uniformly continuous functions from M^n to M),
 - predicate symbols with given moduli of uniform continuity (interpreted as uniformly continuous functions from M to $[0, 1]$).

- Logical connectives: the set of all continuous functions $[0, 1] \rightarrow [0, 1]$, or any subfamily which generates a dense subset (e.g. $\left\{ \neg, \frac{x}{2}, \cdot \right\}$).

- Quantifiers: “sup” for “\forall”, “inf” for “\exists”.

- 0 is “True”, 1 is “False”.
Assume \mathcal{M} is a first order structure in a language \mathcal{L}.

Given a first-order formula $\varphi(x) \in \mathcal{L}$, what is the probability that a random element from \mathcal{M} satisfies this formula?

Originally formalized by Keisler in classical logic, later by Ben Yaacov and Keisler in continuous logic.

Can be thought of as the structure consisting of the random variables on some probability space taking value in \mathcal{M}; as well as a generalization of the ultraproduct construction, with an ultrafilter replaced by an arbitrary measure.
Let Ω be a set and $(M_\omega)_{\omega \in \Omega}$ a family of \mathcal{L}-structures.

The product $\prod_{\omega \in \Omega} M_\omega$ consists of all functions $a : \Omega \to \bigcup M_\omega$ with $a(\omega) \in M_\omega$ for all $\omega \in \Omega$. Function symbols and terms of \mathcal{L} are interpreted coordinatewise on $\prod M_\omega$.

For $\varphi(\bar{x}) \in \mathcal{L}$, $\bar{a} \in (\prod_{\omega} M_\omega)^{|\bar{x}|}$ we define a function

$$\langle \varphi(\bar{a}) \rangle(\omega) : \omega \in \Omega \mapsto \varphi^{M_\omega}(\bar{a}(\omega)) \in [0, 1].$$

A randomization $\mathcal{M} = M_{\Omega, \mathcal{F}, \mu}$ is a continuous (pre-)structure with two sorts (M, A) in \mathcal{L}^R s.t.

1. $(\Omega, \mathcal{F}, \mu)$ is a probability algebra and $A = L_1(\mu) \subseteq [0, 1]^\Omega$,
2. $M \subseteq \prod M_\omega$ is non-empty, closed under function symbols and $\langle P(\bar{a}) \rangle \in A$ for every predicate $P(\bar{x}) \in \mathcal{L}$ and $\bar{a} \in M^{|\bar{x}|}$.
3. the pseudo-metrics $d(X, Y) = \mathbb{E}(|X - Y|)$ on A and $d(a, b) = \mathbb{E}\langle d(a, b) \rangle = \int_{\omega \in \Omega} d(a(\omega), b(\omega)) d\mu$ on M.
4. \mathcal{L}^R contains the function symbols from \mathcal{L}, a function symbol $[P(\bar{x})] : M^{|\bar{x}|} \to A$ for each predicate $P \in \mathcal{L}$, and the signature $\{0, -, \frac{x}{2}, -\}$ on A.

Keisler randomization, 2
Keisler randomization, 3

- Given a randomization \mathcal{L}^R-pre-structure $\mathcal{M} = (M, \mathcal{A})$, its completion (the metric completion of the quotient by elements at distance 0) is an \mathcal{L}^R-structure $\hat{\mathcal{M}} = (\hat{M}, \hat{\mathcal{A}})$.

- When $M = \prod M_\omega$, $\mathcal{A} = [0, 1]^\Omega$, $\mu := \mathcal{U}$ is an ultrafilter on Ω, then $\hat{\mathcal{A}} = [0, 1]$ and $\hat{\mathcal{M}}$ is naturally identified with the ultraproduct $\prod M_\omega / \mathcal{U}$.

- We would like to axiomatize (and find a model companion) for the theory of randomizations.

- A randomization (M, \mathcal{A}) is full if $\forall a \neq b \in M, X \in \mathcal{A} \exists c \in M$ s.t. $c(\omega) = a(\omega)$ for all $\omega \in \Omega$ with $X(\omega) = 1$, $c(\omega) = b(\omega)$ for all ω with $X(\omega) = 0$, and $c(\omega)$ is arbitrary otherwise.

- (M, \mathcal{A}) is atomless if \mathcal{F} is an atomless algebra.

- Ex: let \mathcal{M} be a structure, $(\Omega, \mathcal{F}, \mu)$ an atomless probability space, and $M \subseteq M^\Omega$ consists of all functions $a : \Omega \to M$ taking at most countably many values in M, each on a measurable set. Then the corresponding (M, \mathcal{A}) is a full atomless randomization.
Fact (Ben Yaacov)

1. For a fixed language \mathcal{L}, there exists a continuous theory T_0^R so that: an \mathcal{L}^R-structure is a model of T_0^R if and only if it is isomorphic to (\hat{M}, \hat{A}) for some full atomless randomization (M, A); and for every $\varphi(\bar{x}) \in \mathcal{L}$ and $\bar{a} \in M^{\bar{x}}$ we have $\langle \varphi(\bar{a}) \rangle = [\varphi(\bar{a})]$.

2. For an \mathcal{L}-theory T, let $T^R := T_0^R \cup \{ [\varphi] = 0 : \varphi \in T \}$. Then T^R eliminates quantifiers down to the formulas of the form $E[\varphi(\bar{x})]$ with $\varphi(\bar{x}) \in \mathcal{L}$.

3. The types in $S_n(T^R)$ are in bijection with regular Borel probability measures on the space $S_n(T)$. In particular if T is complete, then so is T^R.
Shelah’s classification

- Classification theory: Shelah’s dividing lines express limitations on definable binary relations, by forbidding certain finitary combinatorial configurations (stability, NIP, simplicity, see Baldwin’s talk).

- Often on the tame case, obtain consequences of the form: types (over infinite sets) in more than one variable are controlled by unary types, up to a “small error” (e.g. stationarity of non-forking in stable theories, up to algebraic closure).

- Emerging “n-classification theory”: types in any number of variables are controlled by types in at most n-variables, up to a “small error”.

- Here we focus on n-dependence introduced by Shelah:
N-dependent theories

Given an \((n+1)\)-ary relation \(E \subseteq \prod_{1 \leq i \leq n+1} X_i\) and \(d \in \mathbb{N}\), we write \(\text{VC}_n(E) \leq d\) if there do not exist sets \(A_i \subseteq X_i\) with \(|A_i| > d\) for \(1 \leq i \leq n\) and \(b_S \in X_{n+1}\) for \(S \subseteq \prod_{1 \leq i \leq n} A_i\) so that

\[(a_1, \ldots, a_n, b_S) \in E \iff (a_1, \ldots, a_n) \in S\]

for all \((a_1, \ldots, a_n) \in \prod_{1 \leq i \leq n} A_i\).

Write \(\text{VC}_n(E) < \infty\) and say \(E\) is \(n\)-dependent if \(\text{VC}_n(E) \leq d\) for some \(d \in \mathbb{N}\).

A theory \(T\) is \(n\)-dependent if every formula \(\varphi(x_1, \ldots, x_{n+1})\), with \(x_i\) a tuple of variables, defines an \(n\)-dependent relation in any model of \(T\).
N-dependent theories: basic facts and examples

- The case \(n = 1 \) corresponds to NIP.
- The property \(VC_n < \infty \) is preserved under permutations of variables and Boolean combinations, and \(n \)-dependence of a theory is witnessed by formulas with all but one variable singletons.
- Examples of \(n \)-dependent theories:
 - For \(n \geq 2 \), the theory of the generic \(n \)-hypergraph is strictly \(n \)-dependent (i.e. \(n \)-dependent, but not \((n-1) \)-dependent).
 - [C., Hempel] For each \(n \geq 2 \), there exist strictly \(n \)-dependent pure groups.
 - [Cherlin, Hrushovski] Smoothly approximable structures are 2-dependent.
 - [C., Hempel] For \(n \geq 2 \), non-degenerate \(n \)-linear forms on vector spaces over NIP fields are strictly \(n \)-dependent.
 - Conjecturally, there are no strictly \(n \)-dependent (pure) fields for \(n \geq 2 \).
N-dependence in continuous logic

- Stability, NIP, etc. all have natural generalizations in continuous logic.

- Given a function \(f : \prod_{1 \leq i \leq n+1} X_i \to [0, 1] \) and a countable sequence \(\bar{d} = (d_{r,s} \in \mathbb{N} : r < s \in \mathbb{Q} \cap [0, 1]) \), we write \(\text{VC}_n(f) \leq \bar{d} \) if for each \(r < s \in \mathbb{Q} \cap [0, 1] \) there do not exist sets \(A_i \subseteq X_i \) with \(|A_i| > d_{r,s} \) for \(1 \leq i \leq n \) and \(b_S \in X_{n+1} \) for \(S \subseteq \prod_{1 \leq i \leq n} A_i \) so that

\[
(a_1, \ldots, a_n) \in S \implies f(a_1, \ldots, a_n, b_S) \geq s, \\
(a_1, \ldots, a_n) \not\in S \implies f(a_1, \ldots, a_n, b_S) \leq r.
\]

- A function \(f \) is \(n \)-dependent, written \(\text{VC}_n(f) < \infty \), if \(\text{VC}_n(f) \leq \bar{d} \) for some sequence \(\bar{d} \).

- A continuous theory \(T \) is \(n \)-dependent if for every (continuous) formula in \(n + 1 \) tuples of variables, the function from any model of \(T \) to \([0, 1]\) defined by it is \(n \)-dependent.
Randomization and classification

Fact
- [Ben Yaacov, Keisler] If T is (\aleph_0, super-) stable, then T^R is also (\aleph_0, super-) stable.
- [Ben Yaacov] If T is NIP, then T^R is also NIP.
- [Ben Yaacov] If T is not NIP, then T^R has TP$_2$. In particular simplicity is not preserved. But at least:
- [Ben Yaacov, C., Ramsey] If T is NSOP$_1$, then T^R is also NSOP$_1$.

Theorem (C., Towsner)
For every $n \geq 1$, if T is n-dependent, then T^R is also n-dependent.
Preservation of NIP: key point

- Ben Yaacov’s proof, using relative quantifier elimination in T^R and that composing NIP functions with continuous functions $[0, 1]^k \to [0, 1]$ preserves NIP, reduces to showing that $E[\varphi(\bar{x})]$ is NIP assuming φ is NIP, i.e. the average of a “uniformly NIP” family of functions is NIP (the case $n = 1$ of the theorem below).

- Ben Yaacov establishes this by developing elements of the VC-theory for real valued functions (connected to some earlier work of Talagrand and others).
A generalization to n-dependence

Theorem (C., Towsner)

For every $k \in \mathbb{N}_{\geq 1}$ and \bar{d} there exists some \bar{D} satisfying the following.

Assume $f : \prod_{i \in [n+2]} V_i \to [0, 1]$ is a function and $(V_{n+2}, \mathcal{F}, \mu)$ a probability space, so that

- for any fixed $\bar{x} \in \prod_{i \in [n+1]} V_i$, the function $\omega \mapsto f(\bar{x}, \omega)$ is measurable;
- for any fixed $\omega \in \Omega$, the function $f_\omega : \bar{x} \mapsto f(\bar{x}, \omega)$ satisfies $\text{VC}_n(f_\omega) \leq \bar{d}$.

Then the “average” function $f' : \prod_{i \in [n+1]} \to [0, 1]$ defined by

$$f'(x_1, \ldots, x_{k+1}) := \int_{\omega \in \Omega} f(x_1, \ldots, x_{k+1}, \omega) d\mu$$

satisfies $\text{VC}_n(f') \leq \bar{D}$.
Generalized indiscernibles, 1

- T is a theory in a language \mathcal{L}, $\mathbb{M} \models T$.

- Let I be an \mathcal{L}'-structure. Then $\bar{a} = (a_i : i \in I)$, with a_i a tuple in \mathbb{M}, is I-indiscernible if for all i_1, \ldots, i_n and j_1, \ldots, j_n from I:

$$
\text{qftp}_{\mathcal{L}'}(i_1, \ldots, i_n) = \text{qftp}_{\mathcal{L}'}(j_1, \ldots, j_n) \implies \text{tp}_{\mathcal{L}}(a_{i_1}, \ldots, a_{i_n}/C) = \text{tp}_{\mathcal{L}}(a_{j_1}, \ldots, a_{j_n}/C).
$$

- Say that $(b_j : j \in I)$ is based on $(a_i : i \in I)$ if for any finite set Δ of \mathcal{L}-formulas and (j_0, \ldots, j_n) from I there is some (i_1, \ldots, i_n) from I s.t.

$$
\text{qftp}_{\mathcal{L}_0}(j_1, \ldots, j_n) = \text{qftp}_{\mathcal{L}_0}(i_1, \ldots, i_n), \text{ and } \\
\text{tp}_{\Delta}(b_{j_1}, \ldots, b_{j_n}) = \text{tp}_{\Delta}(a_{i_1}, \ldots, a_{i_n}).
$$

- The usual indiscernible sequences correspond to the case when I is a linear order.
Generalized indiscernibles, 2

- Let \mathcal{K} be a class of finite \mathcal{L}_0-structures. For $A, B \in K$, let $\binom{B}{A}$ be the set of all $A' \subseteq B$ s.t. $A' \cong A$.

- \mathcal{K} is Ramsey if for any $A, B \in K$ and $k \in \omega$ there is some $C \in K$ s.t. for any coloring $f : \binom{C}{A} \to k$, there is some $B' \in \binom{C}{B}$ s.t. $f \upharpoonright \binom{B'}{A}$ is constant.

- The usual Ramsey theorem: the class of finite linear orders is Ramsey.

- [Scow] Let \mathcal{K} be a Fraïssé class of finite structures, and let I be its limit. If \mathcal{K} is Ramsey, then for any \bar{a} indexed by I there exists (in \mathbb{M}) an I-indiscernible based on it.

- [Nesétril, Rödl], [Abramson, Harrington] For any $k \in \mathbb{N}_{\geq 1}$, the class of all finite ordered (partite) k-hypergraphs is Ramsey (let $\mathcal{O}H_k$ denote its Fraïssé limit).
Step 1: a sufficiently indiscernible witness

Assuming that the theorem fails, using some analytic arguments and extracting an indiscernible, we can thus find some \(r < s, q > t \in [0, 1] \) and an \(\mathcal{OH}_{n+1} \)-indiscernible \(\bar{a} \) in some expansion of the language making the measure \(\mu \) definable so that

\[
\mathcal{OH}_{n+1} \models R(g_1, \ldots, g_{n+1}) \implies \\
\mu(\{ \omega : f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) < r \}) \geq q \text{ and } \\
\mathcal{OH}_{n+1} \models \neg R(g_1, \ldots, g_{n+1}) \implies \\
\mu(\{ \omega : f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) < s \}) \leq t.
\]

This indiscernibility guarantees certain “exchangeability” in the probabilistic sense. Exchangeability theory: exchangeable sequences [de Finetti] and arrays [Aldous-Hoover-Kallenberg] of random variables can be presented “up to mixing” using i.i.d. random variables (parallel to the hypergraph regularity lemma), and we need a certain generalization to relational structures.
Exchangeable random structures

Let $\mathcal{L}' = \{R'_1, \ldots, R'_k\}$, R'_i a relation symbol of arity r'_i. By a random \mathcal{L}'-structure we mean a (countable) collection of random variables

$$\left(\xi^i_{\bar{n}} : i \in [k'], \bar{n} \in \mathbb{N}^{r'_i} \right)$$

on some probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi^i_{\bar{n}} : \Omega \to \{0, 1\}$.

Let now $\mathcal{L} = \{R_1, \ldots, R_k\}$ be another relational language, with R_i a relation symbol of arity r_i, and let $\mathcal{M} = (\mathbb{N}, \ldots)$ be a countable \mathcal{L}-structure with domain \mathbb{N}. We say that a random \mathcal{L}'-structure $\left(\xi^i_{\bar{n}} : i \in [k'], \bar{n} \in \mathbb{N}^{r'_i} \right)$ is \mathcal{M}-exchangeable if for any two finite subsets $A = \{a_1, \ldots, a_\ell\}$, $A' = \{a'_1, \ldots, a'_\ell\} \subseteq \mathbb{N}$

$$\text{qftp}_\mathcal{L} (a_1, \ldots, a_\ell) = \text{qftp}_\mathcal{L} (a'_1, \ldots, a'_\ell) \implies$$

$$\left(\xi^i_{\bar{n}} : i \in [k'], \bar{n} \in A^{r'_i} \right) = \text{dist} \left(\xi^i_{\bar{n}} : i \in [k'], \bar{n} \in (A')^{r'_i} \right).$$
A higher amalgamation condition on the indexing structure

- Let \mathcal{K} be a collection of finite structures in a relational language \mathcal{L}.

- For $n \in \mathbb{N}_{\geq 1}$, we say that \mathcal{K} satisfies the n-disjoint amalgamation property (n-DAP) if for every collection of \mathcal{L}-structures $(\mathcal{M}_i = (M_i, \ldots) : i \in [n])$ so that
 - each \mathcal{M}_i is isomorphic to some structure in \mathcal{K},
 - $M_i = [n] \setminus \{i\}$, and
 - $\mathcal{M}_i|_{[n] \setminus \{i, j\}} = \mathcal{M}_j|_{[n] \setminus \{i, j\}}$ for all $i \neq j \in [n]$,

there exists an \mathcal{L}-structure $\mathcal{M} = (M, \ldots)$ isomorphic to some structure in \mathcal{K} such that $M = [n]$ and $\mathcal{M}|_{[n] \setminus \{i\}} = \mathcal{M}_i$ for every $1 \leq i \leq n$.

- We say that an \mathcal{L}-structure \mathcal{M} satisfies n-DAP if the collection of its finite induced substructures does.

- Ex.: the generic k-hypergraph \mathcal{H}_k satisfies n-DAP for all n, but $(\mathbb{Q}, <)$ fails 3-DAP.
Presentation for random relational structures

Fact (Crane, Towsner)

Let $\mathcal{L}' = \{ R'_i : i \in [k'] \}$, $\mathcal{L} = \{ R_i : i \in [k] \}$ be finite relational languages with all R'_i of arity at most r', and $\mathcal{M} = (\mathbb{N}, \ldots)$ a countable ultrahomogeneous \mathcal{L}-structure that has n-DAP for all $n \geq 1$. Suppose that $\left(\xi^n_i : i \in [k'], \bar{n} \in \mathbb{N}^{r'_i} \right)$ is a random \mathcal{L}'-structure that is \mathcal{M}-exchangeable, such that the relations R'_i are symmetric with probability 1. Then there exists a probability space $(\Omega', \mathcal{F}', \mu')$, $\{0, 1\}$-valued Borel functions $f_1, \ldots, f_{r'}$ and a collection of Uniform$[0, 1]$ i.i.d. random variables $(\zeta_s : s \subseteq \mathbb{N}, |s| \leq r')$ on V' so that

$$\left(\xi^n_i : i \in [k'], \bar{n} \in \mathbb{N}^{r'_i} \right) = \text{dist}$$

$$\left(f_i \left(\mathcal{M}|_{\text{rng} \bar{n}}, (\zeta_s)_{s \subseteq \text{rng} \bar{n}} \right) : i \in [k'], \bar{n} \in \mathbb{N}^{r'_i} \right),$$

where $\text{rng} \bar{n}$ is the set of its distinct elements, and \subseteq denotes “subsequence”.
Step 2: getting rid of the ordering

- Our counterexample is only guaranteed to be \mathcal{OH}_{n+1}-exchangeable (and the ordering is unavoidable in the Ramsey theorem for hypergraphs) — but the presentation theorem requires n-DAP.

- We show that \mathcal{OH}_n-exchangeability implies \mathcal{H}_n-exchangeability, using that the theory of probability algebras is stable!

- Implicit in [Ryll-Nardzewski], explicit in [Ben Yaacov], a more general result by [Hrushovski] (proved using array de Finetti), and [Tao] gives an elementary proof:

Fact

For any $0 \leq p < q \leq 1$ there exists N satisfying: if (V, \mathcal{F}, μ) is a probability space, and $A_1, \ldots, A_n, B_1, \ldots, B_n \in \mathcal{F}$ satisfy

$\mu(A_i \cap B_j) \geq q$ and $\mu(A_j \cap B_i) \leq p$ for all $1 \leq i < j \leq n$, then $n \leq N$.
Step 3: finding a common point

- Applying the exchangeable presentation to the counterexample and working with *independent* random variables, we show that for any finite set $S \subseteq \mathcal{O}H_{n+1}$, the following set has positive measure:

$$
\bigcap_{\bar{g} \in R \upharpoonright S} \{ \omega \in \Omega : f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) < r \} \cap
\bigcap_{\bar{g} \in \neg R \upharpoonright S} \Omega \setminus \{ \omega \in \Omega : f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) < s \}.
$$

- By saturation we then find $\omega \in \Omega$ so that for all $(n+1)$-tuples \bar{g} in $\mathcal{O}H_{n+1}$ we have:

 - $\bar{g} \in R \implies f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) < r,$
 - $\bar{g} \notin R \implies f(a_{g_1}, \ldots, a_{g_{n+1}}, \omega) \geq s.$

- This contradicts the assumption $\text{VC}_n(f_{\omega}) < \infty$.
Thank you!