Idempotent Keisler measures

Artem Chernikov
(joint with Kyle Gannon)

UCLA

Logic Seminar at Imperial College, London, UK (via Zoom)
May 19, 2021
Spaces of types

- Let T be a complete first-order theory in a language \mathcal{L}, $\mathbb{M} \models T$ a monster model (i.e. κ-saturated and κ-homogeneous for a sufficiently large cardinal κ), $\mathcal{M} \preceq \mathbb{M}$ a small elementary submodel.

- For $A \subseteq \mathbb{M}$ and x an arbitrary tuple of variables, $S_x(A)$ denotes the set of complete types over A.

- Let $\mathcal{L}_x(A)$ denote the set of all formulas $\varphi(x)$ with parameters in A, up to logical equivalence — which we identify with the Boolean algebra of A-definable subsets of \mathbb{M}_x; $\mathcal{L}_x := \mathcal{L}_x(\emptyset)$.

- Then the types in $S_x(A)$ are the ultrafilter on $\mathcal{L}_x(A)$.

- By Stone duality, $S_x(A)$ is a totally disconnected compact Hausdorff topological space with a basis of clopen sets of the form

 $$\langle \varphi \rangle := \{ p \in S_x(A) : \varphi(x) \in p \}$$

 for $\varphi(x) \in \mathcal{L}_x(A)$.

- We refer to types in $S_x(\mathbb{M})$ as global types.
Keisler measures

- A *Keisler measure* μ in variables x over $A \subseteq M$ is a finitely-additive probability measure on the Boolean algebra $\mathcal{L}_x(A)$ of A-definable subsets of M_x.
- $\mathcal{M}_x(A)$ denotes the set of all Keisler measures in x over A.
- Then $\mathcal{M}_x(A)$ is a compact Hausdorff space with the topology induced from $[0,1]^{\mathcal{L}_x(A)}$ (equipped with the product topology).
- A basis is given by the open sets

$$\bigcap_{i<n}\{\mu \in \mathcal{M}_x(A) : r_i < \mu(\varphi_i(x)) < s_i\}$$

with $n \in \mathbb{N}$ and $\varphi_i \in \mathcal{L}_x(A)$, $r_i, s_i \in [0,1]$ for $i < n$.

- Identifying p with the Dirac measure δ_p, $S_x(A)$ is a closed subset of $\mathcal{M}_x(A)$ (and the convex hull of $S_x(A)$ is dense).
- Every $\mu \in \mathcal{M}_x(A)$, viewed as a measure on the clopen subsets of $S_x(A)$, extends uniquely to a regular (countably additive) probability measure on Borel subsets of $S_x(A)$; and the topology above corresponds to the weak*-topology: $\mu_i \to \mu$ if $\int fd\mu_i \to \int fd\mu$ for every continuous $f : S_x(A) \to \mathbb{R}$.
Some examples of Keisler measures

1. In arbitrary T, given $p_i \in S_x(A)$ and $r_i \in \mathbb{R}$ for $i \in \mathbb{N}$ with $\sum_{i \in \mathbb{N}} r_i = 1$, $\mu := \sum_{i \in \mathbb{N}} r_i \delta_{p_i} \in M_x(A)$.

2. Let $T = \text{Th}(\mathbb{N}, =)$, $|x| = 1$. Then

$$S_x(M) = \{ \text{tp}(a/M) : a \in M \} \cup \{ p_\infty \},$$

where p_∞ is the unique non-realized type axiomatized by $\{ x \neq a : a \in M \}$. By QE, every formula is a Boolean combination of $\{ x = a : a \in M \}$, from which it follows that every $\mu \in M_x(M)$ is as in (1).

3. More generally, if T is ω-stable (e.g. strongly minimal, say ACF_p for p prime or 0) and x is finite, then every $\mu \in M_x(M)$ is a sum of types as in (1).

4. Let $T = \text{Th}(\mathbb{R}, <)$, λ be the Lebesgue measure on \mathbb{R} and $|x| = 1$. For $\varphi(x) \in L_x(M)$, define $\mu(\varphi) := \lambda(\varphi(M) \cap [0, 1]_{\mathbb{R}})$ (this set is Borel by QE). Then $\mu(X)$ is a Keisler measure, but not a sum of types as in (1).
Brief history of the theory of Keisler measures

- Measures and forking in stable/NIP theories [Keisler’87]
- Automorphism-invariant measures in ω-categorical structures [Albert’92, Ensley’96]
- Applications to neural networks [Karpinski, Macintyre’00]
- Pillay’s conjecture and compact domination [Hrushovski, Peterzil, Pillay’08], [Hrushovski, Pillay’11], [Hrushovski, Pillay, Simon’13]
- Randomizations [Ben Yaacov, Keisler’09] (NIP and stability are preserved)
- Approximate Subgroups [Hrushovski’12]
- Definably amenable NIP groups [C., Simon’15] (in particular translation-invariant measures are classified)
- Tame (equivariant) regularity lemmas: subsets of [C., Conant, Malliaris, Pillay, Shelah, Starchenko, Terry, Tao, Towsner, …’11–…]

Keisler measures outside of NIP?

- All of the above — mostly inside the context of NIP theories (thanks to the VC-theory, measures are strongly approximated by types).
- Pseudofinite fields — ultraproducts of finite counting measures are very well-behaved (more generally in MS-measurable structures).
- But very few general results outside of NIP so far. Some counterexamples:
 - Independent product \otimes of Borel-definable measures is not associative in general [Conant, Gannon, Hanson’21];
 - Not all groups in simple theories are definably amenable [C., Hrushovski, Kruckman, Krupinski, Moconja, Pillay and Ramsey’21].
- Some positive results:
 - A weak generalization of ε-nets for n-dependen theories [C., Towsner’20]
 - NSOP$_1$ is preserved under randomizations [Ben Yaacov, C., Ramsey, 21+]
Independent product of definable types \otimes, 1

- Given two global types $p(x), q(y)$, there are usually many different global types $r(x, y)$ satisfying $r(x, y) \supseteq p(x) \cup q(y)$ (as $L_x(\mathbb{M}) \times L_y(\mathbb{M}) \subseteq L_{xy}(\mathbb{M})$).

- Under additional assumptions on p, there is often a canonical “generic” choice of r not introducing any dependencies between x and y (e.g. not containing $x = y$). We restrict to definable types for simplicity of presentation (but works for invariant types as well).

- Given $A \subseteq B \subseteq \mathbb{M}$, a type $p \in S_x(B)$ is definable over A if for every formula $\varphi(x, y) \in L_{xy}$ there exists a formula $d_p \varphi(y) \in L_y(A)$ such that

$$\forall b \in B^y, \varphi(x, b) \in p \iff \models d_p \varphi(b).$$

- A global type is definable if it is definable over some small model.

- A theory is stable if and only if all types are definable [Shelah].
Independent product of definable types \otimes, 2

- Assume that $p \in S_x(\mathbb{M})$, $q \in S_y(\mathbb{M})$ and p is definable. Then $p \otimes q \in S_{xy}(\mathbb{M})$ is defined via

$$\varphi(x, y) \in p \otimes q \iff d_p \varphi(y) \in q$$

for every $\varphi(x, y) \in \mathcal{L}_{xy}$.

- Equivalently, $p \otimes q = tp(a, b/\mathbb{M})$ for some/any $b \models q$ and $a \models p'|_{\mathbb{M}b}$ (in some $\mathbb{M}' \succ \mathbb{M}$; where $p' \in S_x(\mathbb{M}')$ is the extension of p given by the same definition schema).

- E.g. if p is the non-realized type in $\text{Th}(\mathbb{N}, =)$, then $p(x) \otimes p(y) = p(y) \otimes p(x)$ is axiomatized by

$$\{x \neq a, y \neq a : a \in \mathbb{M}\} \cup \{x \neq y\}.$$

- Assume $p(x) = \{x > a : a \in \mathbb{M}\}$ in $\text{Th}(\mathbb{Q}, <)$. Then

$$p(x) \otimes q(y) = \{x > a, y > a : a \in \mathbb{M}\} \cup \{x > y\} \neq p(y) \otimes q(x).$$

- Hence \otimes is associative, but not commutative (unless T is stable).
Convolution product \ast of definable types

- Assume now that T expands a group, i.e. there exists a definable functions \cdot such that for some/any $\mathcal{M} \models T$, (\mathcal{M}_x, \cdot) is a group.

- In this case, given definable $p, q \in S_x(\mathbb{M})$, we have a definable type $p \ast q \in S_x(\mathbb{M})$ via

$$\varphi(x) \in p \ast q \iff \varphi(x \cdot y) \in p(x) \otimes q(y)$$

for every $\varphi(x) \in \mathcal{L}_x(\mathbb{M})$.

- Equivalently, $p \ast q = \text{tp}(a \cdot b/\mathbb{M})$ for some/any $(a, b) \models p \otimes q$ in a larger monster model.

- Let $S_x^{\text{def}}(\mathbb{M})$ be the set of all definable global types. Then $(S_x^{\text{def}}(\mathbb{M}), \ast)$ is a left-continuous semigroup.

- “Left continuous” means: the map $- \ast q : S_x^{\text{def}}(\mathbb{M}) \to S_x^{\text{def}}(\mathbb{M})$ is continuous for every fixed $q \in S_x^{\text{def}}(\mathbb{M})$.
Idempotent types

- A type \(p \in S_x^{\text{def}}(M) \) is idempotent if \(p \ast p = p \).
- E.g. let \(M \) be \((\mathbb{Z}, +, P_{n,\alpha})\), with \((P_{n,\alpha} : \alpha < 2^{\aleph_0})\) naming all subsets of \(\mathbb{Z}^n \), for all \(n \).
 Then all types over \(M \) are trivially definable, and idempotent types are precisely the idempotent ultrafilters in the sense of Galvin–Glazer’s proof of Hindman’s theorem (for every finite partition of \(\mathbb{Z} \), some part contains all finite sums of elements of an infinite set), see e.g. [Andrews, Goldbring’18].
- In stable theories, idempotent types are known to arise from type-definable subgroups (group chunk theorem and its variants [Hrushovski, Newelski]).
- This is parallel to the following classical line of research:
Motivation: analogy with the classical (locally-)compact case

- Let G be a locally compact topological group.
- Then the space of regular Borel probability measures on G is equipped with the convolution product:

\[
\mu \ast \nu(A) = \int_{y \in G} \int_{x \in G} \chi_A(x \cdot y) d\mu(x) d\nu(y)
\]

for a Borel set $A \subseteq G$.

- If G is compact, then μ is idempotent if and only if the support of μ is a compact subgroup of G and μ restricted to it is the (bi-invariant) Haar measure [Wendel’54].
- Same characterization extends to locally compact abelian groups [Rudin’59, Cohen’60].
- Compact (semi-)topological semigroup — the picture becomes more complicated [Glicksber’59, Pym’69, ...].
Independent product \(\otimes \) of definable Keisler measures

- We would like to find a parallel for Keisler measures, generalizing the situation for types. First, need to make sense of the convolution product.
- A Keisler measure \(\mu \in \mathcal{M}_x(\mathcal{M}) \) is **definable** (over \(\mathcal{M} \preceq \mathcal{M} \)) if:
 1. for any \(\varphi(x, y) \in \mathcal{L}_{xy} \) and \(b \in \mathcal{M}_y \), \(\mu(\varphi(x, b)) \) depends only on \(\text{tp}(b/\mathcal{M}) \)
 (in which case, given \(q \in S_y(\mathcal{M}) \), we write \(\mu(\varphi(x, q)) \) to denote \(\mu(\varphi(x, b)) \) for some/any \(b \models q \));
 2. the map \(q \in S_y(\mathcal{M}) \mapsto \mu(\varphi(x, q)) \in [0, 1] \) is continuous.
- A type \(p \in S_x(\mathcal{M}) \) is definable as a type iff it is definable as a measure.
- Given \(\mu \in \mathcal{M}_x(\mathcal{M}), \nu \in \mathcal{M}_y(\mathcal{M}) \) with \(\mu \mathcal{M}\)-definable, we can define \(\mu \otimes \nu \in \mathcal{M}_{xy}(\mathcal{M}) \) via
 \[
 \mu \otimes \nu(\varphi(x, y)) := \int_{S_y(\mathcal{M})} \mu(\varphi(x, q)) d\nu|_\mathcal{M}(q).
 \]
- The integral makes sense by (2), viewing \(\nu|_\mathcal{M} \) as a regular Borel measure on \(S_y(\mathcal{M}) \). (Works also for only *Borel-definable*).
Convolution product \ast of definable Keisler measures

- \otimes on definable measures extends \otimes on definable types defined earlier.

- If now T expands a group, given definable $\mu, \nu \in \mathcal{M}_x(\mathbb{M})$, we get a definable $\mu \ast \nu \in \mathcal{M}_x(\mathbb{M})$ via

$$\mu \ast \nu(\varphi(x)) := \mu_x \otimes \nu_y(\varphi(x \cdot y)).$$

- Again, restricting to definable types, we recover \ast defined earlier.

- The set of all definable Keisler measures with \ast is a semigroup. A measure μ is idempotent if $\mu \ast \mu = \mu$.

Theorem (C., Gannon’20)

If T is NIP, then \ast is again left-continuous (on invariant measures).

- In general T — unclear.
Idempotent Keisler measures vs the classical locally compact case

- First of all, in general a definable group has no non-discrete topology.
- Given $\mu \in \mathcal{M}_x(A)$, its support is

$$S(\mu) := \{ p \in S_x(A) : \varphi(x) \in p \implies \mu(\varphi(x)) > 0 \}.$$

It is a closed non-empty subset of $S_x(A)$.
- As we mentioned, in a locally compact topological group, support of an idempotent measure is a closed subgroup — no longer true for idempotent Keisler measures (with respect to \ast on types), even if there is some nice topology present:
Supports of idempotent Keisler measures: an example, 1

- Let $\mathcal{M} = (S^1, \cdot, C(x, y, z))$ be the compact unit circle group (of rotations) over \mathbb{R}, with C the cyclic clockwise ordering.
- Let $\mu \in \mathcal{M}_x(\mathbb{M})$ be given by $\mu(\varphi(x)) = h(\varphi(\mathcal{M}))$ for $\varphi(x) \in \mathcal{L}_x(\mathbb{M})$, where h is the Haar measure on S^1.
- Then μ is definable and right translation invariant (by elements of \mathbb{M}), hence idempotent.
- Let $\text{st} : S_x(\mathbb{M}) \to \mathcal{M}$ be the standard part map. Assume that $p \in S(\mu)$ and $\text{st}(p) = a$. Then $\varphi_\varepsilon(x) := C(a - \varepsilon, x, a + \varepsilon) \notin p$ for every infinitesimal $\varepsilon \in \mathbb{M}$ ($x \neq a \in p$ as $h(x = a) = 0$, and if $\varphi_\varepsilon(x) \in p$, then $\mu(\varphi_\varepsilon(x) \land x \neq a) > 0$, but $\varphi_\varepsilon(\mathcal{M}) = \{a\}$ — a contradiction).
- As the types in $S_x(\mathbb{M})$ are determined by the cuts in the circular order, it follows that for every $a \in \mathcal{M}$ there are exactly two types $a_+(x), a_-(x) \in S(\mu)$ determined by whether $C(a + \varepsilon, x, b)$ holds for every infinitesimal ε and $b \in \mathcal{M}$, or $C(b, x, a - \varepsilon)$ holds for every infinitesimal ε and $b \in \mathcal{M}$, respectively.
It follows that \((S(\mu), \ast) \cong S^1 \times \{+, -\}\) with multiplication defined by:
\[a_\delta \ast b_\gamma = (a \cdot b)_\delta \]
for all \(a, b \in S^1\) and \(\delta, \gamma \in \{+, -\}\).

Hence \((S(\mu), \ast)\) is not a group (as it has two idempotents).

This group is NIP (definable in an \(o\)-minimal theory), unstable.
Supports of idempotent Keisler measures: a theorem

- Adapting Glicksberg, we show:

Theorem (C., Gannon’20)

1. *(T arbitrary)* Let \(\mu \in \mathcal{M}_x(\mathcal{M}) \) be an idempotent definable and invariantly supported Keisler measure. Then \((S(\mu), \ast)\) is a compact, left continuous semigroup with no closed two-sided ideals.

2. *(T NIP)* The same conclusion holds just assuming that \(\mu \) is definable.

- Where:
 - \(I \subseteq S(\mu) \) is a left (right) ideal if: \(q \in I \implies p \ast q \in I \) (resp., \(q \ast p \in I \)) for every \(p \in S(\mu) \). Two-sided = both left and right.
 - \(\mu \) is **invariantly supported** if there exists a small model \(\mathcal{M} \preceq \mathcal{M} \) s.t. every \(p \in S(\mu) \) is \(\text{Aut}(\mathcal{M}/\mathcal{M}) \)-invariant.
Type-definable subgroups

- Instead of closed subgroups in the topological setting, we consider *type-definable* subgroups.
- Assume that $\mathbb{M} \models T$ expands a group, and \mathcal{H} is a type-definable subgroup of (\mathbb{M}, \cdot) (i.e. the underlying set of \mathcal{H} can be defined by a small partial type $H(x)$ with parameters in \mathbb{M}).
- Let \mathcal{H} be type-definable and suppose that $\mu \in \mathcal{M}_x(\mathbb{M})$ is concentrated on \mathcal{H} (i.e. $p \in S(\mu) \implies p(x) \vdash H(x)$) and is right \mathcal{H}-invariant (i.e. for any $\varphi(x) \in \mathcal{L}_x(\mathbb{M})$, $a \in \mathcal{H}$, $\mu(\varphi(x)) = \mu(\varphi(x \cdot a))$). Then μ is idempotent.
- Ideology: by analogy with the classical case, we expect all idempotent Keisler measures in model-theoretically tame groups to be of this form.
- (Translation-invariant Keisler measures in NIP groups are classified: the ergodic ones are described as certain liftings of the Haar measure on the canonical compact quotient G/G^{00} [C., Simon’18].)
Idempotent measures in stable groups

- Can confirm for stable groups:

Theorem (C., Gannon’20)

Let T be a stable theory expanding a group and $\mu \in M_x(M)$ a Keisler measure. TFAE:

1. μ is idempotent;
2. μ is the unique right/left-invariant measure on its stabilizer, i.e. the type-definable subgroup $St(\mu) = \{ g \in M : g \cdot \mu = \mu \}$.

- The following groups are stable: abelian, free, algebraic over \mathbb{C} (e.g. $GL_n(\mathbb{C}), SL_n(\mathbb{C})$, abelian varieties).

- Ingredients: structure of the supports of definable idempotent measures in NIP; definability of all measures in stable theories (and type-definability of their stabilizers); a variant of Hrushovski’s group chunk theorem for partial types due to Newelski.
Idempotent measures in NIP

► Can we classify idempotent measures in NIP, or even more generally?
► Conjecture: in a (definably amenable) NIP group, every idempotent definable (invariant) measure μ is a left-invariant measure on its type-definable (invariant) stabilizer subgroup.
► Note: no longer needs to be unique!
► Work in progress: can confirm under some additional assumptions: abelian group, μ generically stable (in which case it is the unique measure on its type-definable stabilizer).