Higher classification theory and n-amalgamation

Artem Chernikov

UMD / UCLA

Special session on Model Theory at the AMS Sectional Meeting, University of Wisconsin-Milwaukee, US

Apr 21, 2024

N-Tameness, 1

1. Tameness notions in Shelah's classification are typically given by restrictions on the combinatorial complexity of definable binary relations, by forbidding certain induced subgraphs (e.g. T is stable if no definable binary relation can contain arbitrary large finite half-graphs; and NIP if sufficiently large random bipartite graphs are omitted; and distal if bipartite "expanders" are omitted).
2. A typical result then demonstrates that binary relations are "approximated" by the unary ones, up to a "small" error. For example, stationarity of forking in stable theories says that given $p(x), q(y)$ types over a model M, there exists a unique type $r(x, y)$ over M so that if $(a, b) \mid=r$ then $a \vDash p, b \models q$ and $a \downarrow_{M} b$ - that is, there is a unique type $r(x, y)$
extending $p(x) \cup q(y)$, up to the forking formulas $\varphi(x, y) \in \mathcal{L}(M)$.

N-tameness, 2

1. Another example: T is distal if and only if for any $p(x), q(y)$ global invariant types that commute, there is a unique global type $r(x, y)$ extending $p(x) \cup q(y)$.
2. T is NIP iff for any definable pairwise commuting measures $\mu(x), \nu(y), \varphi(x, y)$ and $\varepsilon>0, \mu \otimes \nu(\varphi(x, y) \Delta \psi(x, y))<\varepsilon$ for some $\psi(x, y)$ a Boolean combination of $\psi_{i}(x), \psi_{i}^{\prime}(y)$.
3. n-tame: any relation $\varphi\left(x_{1}, \ldots, x_{n+1}\right)$ can be "approximated" by relations
4. n-ary implies n-tame for any tameness (1-ary should imply distal - but there are no truly unary theories because of " $=$ ").

N-dependence

We fix a complete theory T in a language \mathcal{L}. For $k \geq 1$ we define:

- A formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$ is k-dependent if there are no infinite sets $A_{i}=\left\{a_{i, j}: j \in \omega\right\} \subseteq M_{y_{i}}, i \in\{1, \ldots, k\}$ in a model \mathcal{M} of T such that $A=\prod_{i=1}^{n} A_{i}$ is shattered by φ, where " A shattered" means: for any $s \subseteq \omega^{k}$, there is some $b_{s} \in M_{x}$ s.t.
$\mathcal{M} \models \varphi\left(b_{s} ; a_{1, j_{1}}, \ldots, a_{k, j_{k}}\right) \Longleftrightarrow\left(j_{1}, \ldots, j_{k}\right) \in s$.
- T is k-dependent if all formulas are k-dependent.
- T is strictly k-dependent if it is k-dependent, but not ($k-1$)-dependent.
- 1-dependent $=$ NIP $\subsetneq 2$-dependent $\subsetneq \ldots$, as witnessed e.g. by the theory of the random k-hypergraph.

Examples of n-dependent structures

Theorem.[C., Hempel] If the field K is NIP, then the theory T of alternating n-linear forms over K (generalizing Granger) is (strictly) n-dependent.
(And if $K \models A C F$, then T is NSOP_{1}, essentially by the same proof as for $n=2$ in [C., Ramsey]).
Theorem [Composition Lemma] Let \mathcal{M} be an \mathcal{L}^{\prime}-structure such that its reduct to a language $\mathcal{L} \subseteq \mathcal{L}^{\prime}$ is NIP. Let $d, k \in \mathbb{N}$, $\varphi\left(x_{1}, \ldots, x_{d}\right)$ be an \mathcal{L}-formula, and $\left(y_{0}, \ldots, y_{k}\right)$ be arbitrary $k+1$ tuples of variables. For each $1 \leq t \leq d$, let $0 \leq i_{1}^{t}, \ldots, i_{k}^{t} \leq k$ be arbitrary, and let $f_{t}: M_{y_{i t}, t} \times \ldots \times M_{y_{i t}} \rightarrow M_{x_{t}}$ be an arbitrary \mathcal{L}^{\prime}-definable k-ary function. Then the formula

$$
\psi\left(y_{0} ; y_{1}, \ldots, y_{k}\right):=\varphi\left(f_{1}\left(y_{i_{1}^{1}}, \ldots, y_{i_{k}}\right), \ldots, f_{d}\left(y_{i_{1}^{d}}, \ldots, y_{i_{k}^{d}}\right)\right)
$$

is k-dependent.
Our earlier proof for $k=2$ used a type counting criterion for types over infinite indiscernible sequences, and set-theoretic absoluteness. We have an analogous result for OP_{2}. Also for FOP_{2} by Abd Aldaim, Conant, Terry.

Proof of the Composition Lemma, 1

- Given a formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right), \varepsilon \in \mathbb{R}_{>0}$ and a function $f: \mathbb{N} \rightarrow \mathbb{N}$, we consider the following condition.
$(\dagger)_{f, \varepsilon}$ There exists some $n^{*} \in \mathbb{N}$ such that the following holds for all $n^{*} \leq n \leq m \in \mathbb{N}$: For any mutually indiscernible sequences I_{1}, \ldots, I_{k} of finite length, with $I_{i} \subseteq \mathbb{M}_{y_{i}}$, $n=\left|I_{1}\right|=\ldots=\left|I_{k-1}\right|, m=\left|I_{k}\right|$, and $b \in \mathbb{M}_{x}$ an arbitrary tuple there exists an interval $J \subseteq I_{k}$ with $|J| \geq \frac{m}{f(n)}-1$ satisfying $\left|S_{\varphi, J}\left(b, I_{1}, \ldots, I_{k-1}\right)\right|<2^{n^{k-1-\varepsilon}}$.
- Proposition. The following are equivalent for a formula $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$, with $k \geq 2$:

1. $\varphi\left(x ; y_{1}, \ldots, y_{k}\right)$ is k-dependent.
2. There exist some $\varepsilon>0$ and $d \in \mathbb{N}$ such that φ satisfies $(\dagger)_{f, \varepsilon}$ with respect to the function $f(n)=n^{d}$.
3. There exist some $\varepsilon>0$ and some function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that φ satisfies $(\dagger)_{f, \varepsilon}$.

- This type-counting criterion can then be used to obtain some combinatorial stabilization of shattering on indiscernible arrays:

Proof of the Composition Lemma, 2

("Kasse II, portato" by Frank Lepold)

Examples of n-dependent structures

In some sense all known "algebraic" examples are built from multilinear forms over NIP fields, is there some general theorem like this?

- [Cherlin-Hrushovski] smoothly approximable structures are 2-dependent: coordinatizable by bilinear forms / finite fields,
- infinite extra-special p-groups, and strictly n-dependent pure groups constructed using Mekler's construction [C., Hempel], using Baudisch's interpretation in alternating bilinear maps. Also generic n-nilpotent groups of odd prime exponent p, d'Elbée, Müller, Ramsey, Siniora.
- Speculation. If T is n-dependent, then it is "linear, or 1-based" relative to its NIP part.
- Conjecture. If K is an n-dependent field (pure, or with valuation, derivation, etc.), then K is NIP.
- Mounting evidence: n-dependent fields are Artin-Schreier closed (Hempel), valued char p are Henselian (C., Hempel), for valued fields reduces to pure fields (Boissonneau), ...

Higher amalgamation, 1

Higher amalgamation was studied by a number of authors, starting with Shelah's work on stability in AEC's, Hrushovski in the study of the saturation spectrum and of generalized imaginaries, continued in a series of papers by Goodrick, Kim, Kolesnikov and others...

Definition

For $n \in \omega$, let $[n]=\{1, \ldots, n\} \in \omega$. For a set X, we let $\mathcal{P}(X)$ be the set of all subsets of $X, \mathcal{P}_{<n}(X)\left(\mathcal{P}_{\leq n}(X)\right)$ the set of all subsets of X of size less (respectively, less or equal) than n, and $\mathcal{P}^{-}(X):=\mathcal{P}(X) \backslash\{X\}$. For $s \subseteq X$, we let
$(\downarrow s):=\{t \subseteq X: t \subseteq s\}$.
We let T be a complete simple first-order theory in a language \mathcal{L}, and we work in $\mathbb{M}^{\text {heq }}$, the expansion of \mathbb{M} by the hyper-imaginaries. As usual, \downarrow denotes forking independence, \downarrow " denotes finite satisfiability, and $b d d(A)$ is the bounded closure of the set A in $\mathbb{M}^{\text {heq }}$.

Higher amalgamation, 2

Definition

Let X be an arbitrary small set, and $S \subseteq \mathcal{P}(X)$ be non-empty and closed under subsets (so in particular $\emptyset \in S$). Let $\left\{r_{s}\left(x_{s}\right): s \in S\right\}$ be a family of complete types over \emptyset (where each x_{s} is a possibly infinite tuple of variables). We say that such a family of types is independent if:

1. if $a_{\emptyset} \models r_{\emptyset}$, then the set of elements of the tuple a_{\emptyset} is boundedly closed;
2. if $s, t \in S$ and $s \subsetneq t$, then $x_{s} \subsetneq x_{t}$ and $r_{s} \subsetneq r_{t}$;
3. for all $s, t \in S$ we have $x_{s} \cap x_{t}=x_{s \cap t}$;
4. if $s \in S$ and $a_{s} \models r_{s}$, then:
4.1 the set $\left\{a_{\{t\}}: t \in S\right\}$ is independent over a_{\emptyset}, where $a_{\{t\}}$ is a subtuple of a_{s} corresponding to the subtuple of the variables

$$
x_{\{t\}} \subseteq x_{s}
$$

4.2 the set of elements of the tuple a_{s} is equal to $b d d\left(\bigcup_{t \in S} a_{\{t\}}\right)$, and the map $a_{s} \rightarrow x_{s}$ between the realizations and the variables is a bijection.

Higher amalgamation, 3

Definition

1. For $n \geq 1, T$ satisfies (independent) n-amalgamation if for every independent system of types $\left\{r_{s}\left(x_{s}\right): s \in \mathcal{P}^{-}([n])\right\}$ there exists a complete type $r_{n}\left(x_{n}\right)$ such that $\left\{r_{s}\left(x_{s}\right): s \in \mathcal{P}([n])\right\}$ is an independent system of types.
2. T satisfies (independent) n-uniqueness if for every independent system of types $\left\{r_{s}\left(x_{s}\right): s \in \mathcal{P}^{-}([n])\right\}$ there exists at most one complete type $r_{n}\left(x_{n}\right)$ such that $\left\{r_{s}\left(x_{s}\right): s \in \mathcal{P}([n])\right\}$ is an independent system of types.
3. T satisfies n-amalgamation (n-uniqueness) over a set $A \subseteq \mathbb{M}$ if (1) (respectively, (2)) holds for every independent system of types with $r_{\emptyset}=\operatorname{tp}(b d d(A))$.
4. T satisfies complete n-amalgamation (or $\leq n$-amalgamation) if T satisfies m-amalgamation for all $1 \leq m \leq n$.

Higher amalgamation, 4

Lemma

Assume $n \geq 1$ and T has $(\leq n)$-amalgamation. Assume that X is a set, $s^{*} \in \mathcal{P}(X), S \subseteq \mathcal{P}_{<n}(X)$ is non-empty and closed under subsets (and if $n=1$, also that $X=\bigcup\left\{s: s \in\left(\downarrow s^{*}\right) \cup S\right\}$), so that $\left\{r_{s}\left(x_{s}\right): s \in\left(\downarrow s^{*}\right) \cup S\right\}$ is an independent system of types. Then $\left\{r_{s}\left(x_{s}\right): s \in\left(\downarrow s^{*}\right) \cup S\right\}$ can be extended to an independent system of types $\left\{r_{s}\left(x_{s}\right): s \in \mathcal{P}(X)\right\}$.

Problem

Is analogous statement true in NSOP ${ }_{1}$ theories, with forking independence replaced by Kim-independence? Note that we have used base monotonicity of forking in the proof.

Higher stationarity and n-dependence

Theorem

Given $n \geq 1$, let T be a simple theory with
$\leq(n+2)$-amalgamation (over models). Then T is n-dependent if and only if T has $(n+1)$-uniqueness (over models).
For $n=1$ this corresponds to the well-known fact that if T is simple (hence satisfies ≤ 3-amalgamation over models) and there exists a non-stationary type (i.e. 2-stationarity fails), then T is not NIP.

Definition (Takeuchi)

A partitioned formula $\varphi\left(x ; y_{1}, y_{2}\right)$ has OP_{2} (probably not the final name) if there exist sequences $\left(a_{i}\right)_{i \in \omega},\left(b_{j}\right)_{j \in \omega}$ with $a_{i} \in \mathbb{M}^{y_{1}}, b_{j} \in \mathbb{M}^{y_{2}}$ so that for every strictly increasing $f: \omega \rightarrow \omega$ there exists $c_{f} \in \mathbb{M}^{x}$ satisfying $\models \varphi\left(c_{f}, a_{i}, b_{j}\right) \Longleftrightarrow i \leq f(j)$ for all $(i, j) \in \omega^{2}$.
A related property FOP_{2} with increasing functions replaced by arbitrary functions $f: \omega \rightarrow \omega$ was also considered by Takeuchi, and it was studied more recently by Terry and Wolf.

Further notions of binarity

We let $\mathcal{C}:=(\mathbb{L}, C)$ be the generic countable binary branching C-relation, i.e. the Fraïssé limit of all finite binary branching C-relations. We also let $\mathcal{C}_{\prec}:=(\mathbb{L}, C, \prec)$ be the generic countable convexly ordered binary branching C-relation, i.e. the Fraïssé limit of all finite convexly ordered binary branching C-relations.

Definition

A theory T is \mathcal{C}-less if there is no formula $\varphi(x, y, z)$ and $\left(a_{g}: g \in \mathbb{L}\right)$ such that $\models \varphi\left(a_{f}, a_{g}, a_{h}\right) \Longleftrightarrow \mathcal{C} \models C(f, g, h)$. Equivalently, if every \mathcal{C}_{\prec}-indiscernible is already (\mathbb{L}, \prec)-indiscernible. Related to treeless theories considered by Kaplan, Ramsey, Simon (probably the same).
Theorem
\mathcal{C}-less theories form a proper subclass of NOP_{2} theories (and more precisely, every \mathcal{C}-less formula is NOP_{2}).

Collapse of various binarities

Theorem
If T is simple with ≤ 4-amalgamation, then the following are equivalent:

1. T satisfies 3-uniqueness;
2. T is 2-dependent;
3. T has no $O P_{2}$;
4. T has no FOP_{2};
5. T is \mathcal{C}-less.

- E.g., as bilinear forms over finite fields have a simple theory and satisfy n-amalgamation for all n, it follows that they are \mathcal{C}-less.

