Regularity for slice-wise stable hypergraphs

Artem Chernikov

UCLA

Model Theory Conference on the occasion of Byunghan Kim’s 60th birthday
Seoul, South Korea, Aug 28, 2023
Joint work with Henry Towsner (U Penn).
For each $i \in \mathbb{N}$, let $G_i = (V_i, E_i)$ be a graph with $|V_i|$ finite and $\lim_{i \to \infty} |V_i| = \infty$.

Given a non-principal ultrafilter \mathcal{U} on \mathbb{N}, the ultraproduct

$$(V, E) = \prod_{i \in \mathbb{N}} (V_i, E_i)$$

is a graph on the set V of size continuum.

Given $k \in \mathbb{N}$ and an internal set $X \subseteq V^k$ (i.e. $X = \prod_{i \in \mathbb{U}} X_i$ for some $X_i \subseteq V_i^k$), we define $\mu^k(X) := \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}$. Then:

- μ^k is a finitely additive probability measure on the Boolean algebra of internal subsets of V^k,
- extends uniquely to a countably additive measure on the σ-algebra \mathcal{B}_k generated by the internal subsets of V^k.

Context: ultraproducts of finite graphs with Loeb measure
Let $\mathcal{B}_1 \times \mathcal{B}_1$ be the product σ-algebra, i.e. for every $E \in \mathcal{B}_1 \times \mathcal{B}_1$ and $\varepsilon > 0$ there exist $A_i, B_i \in \mathcal{B}_1$, $i < k$, so that

$$
\mu^2 \left(E \Delta \left(\bigcup_{i<k} A_i \times B_i \right) \right) < \varepsilon.
$$

Note: $\mathcal{B}_1 \times \mathcal{B}_1 \subsetneq \mathcal{B}_2$ (e.g. for $E = \prod_u E_i$ with E_i a uniformly random graph on V_i we have $E \in \mathcal{B}_2 \setminus (\mathcal{B}_1 \times \mathcal{B}_1)$).
Szemerédi’s regularity lemma as a measure-theoretic statement: Elek-Szegedy, Tao, Towsner, ...

- [Szemerédi’s regularity lemma] Given $E \in \mathcal{B}_2$ and $\varepsilon > 0$, there is a decomposition of the form

$$1_E = f_{\text{str}} + f_{\text{qr}} + f_{\text{err}},$$

where:

- $f_{\text{str}} = \sum_{i \leq n} d_i 1_{A_i}(x) 1_{B_i}(y)$ for some $n \in \mathbb{N}$, $A_i, B_i \in \mathcal{B}_1$ and $d_i \in [0, 1]$ (so f_{str} is $\mathcal{B}_1 \times \mathcal{B}_1$-simple),

- $f_{\text{err}} : V^2 \to [-1, 1]$ and $\int_{V^2} |f_{\text{err}}|^2 \, d\mu^2 < \varepsilon$,

- f_{qr} is quasi-random: for any $A, B \in \mathcal{B}_1$ we have

$$\int_{V^2} 1_A(x) 1_B(y) f_{\text{qr}}(x, y) \, d\mu^2 = 0.$$

- Under what conditions on E can the quasi-random part be omitted?
VC-dimension

- Given $E \subseteq V^2$ and $x \in V$, let $E_x = \{y \in V : (x, y) \in E\}$ be the x-fiber of E.
- A graph $E \subseteq V^2$ has VC-dimension $\geq d$ if there are some $y_1, \ldots, y_d \in V$ such that, for every $S \subseteq \{y_1, \ldots, y_d\}$ there is $x \in V$ so that $E_x \cap \{y_1, \ldots, y_d\} = S$.
- **Example.** If E_i is a random graph on V_i and $(V, E) = \prod_{i \in \mathcal{U}} (V_i, E_i)$, then $\text{VC}(E) = \infty$.
- **Example.** If E is definable in an NIP theory (e.g. E is semialgebraic), then $\text{VC}(E) < \infty$.
Regularity lemma for graphs of finite VC-dimension

- [Alon, Fischer, Newman] [Lovasz, Szegedy] [Hrushovski, Pillay, Simon], [C., Starchenko] If $E \in \mathcal{B}_2$ and $\text{VC}(E) < \infty$, then:
 - $E \in \mathcal{B}_1 \times \mathcal{B}_1$,
 - the number of rectangles needed to approximate E within ε is bounded by a polynomial in $\frac{1}{\varepsilon}$.
We discuss 3-hypergraphs for simplicity.

We have $B_3 \supseteq B_1 \times B_1 \times B_1, B_2 \times B_1$, etc.

Moreover, let $B_{3,2} \subseteq B_3$ be the σ-algebra generated by intersections of “cylindrical” sets of the form

$$\{(x, y, z) \in V^3 : (x, y) \in A \land (x, z) \in B \land (y, z) \in C\}$$

for some $A, B, C \in B_2$. Again, $B_{3,2} \subsetneq B_3$.

Hypergraph regularity lemma] Any $E \in B_3$ can be decomposed as

$$1_E \approx f(x, y, z) + \sum_{i \leq m} \alpha_i 1_{A_i}(x, y) 1_{B_i}(x, z) 1_{C_i}(y, z) + \sum_{j \leq n} \beta_i 1_{D_i}(x) 1_{F_i}(y) 1_{G_i}(z),$$

where f quasi-random w.r.t. $B_{3,2}$, and $A_i, B_i, C_i \in B_2$ are quasi-random w.r.t $B_1 \times B_1$, and $D_i, F_i, G_i \in B_1$.

Apart from f, the rest is $B_{3,2}$-measurable. Under what conditions E is “binary”, i.e. the ternary quasi-random f can be omitted?

[C., Townser] Iff VC$_2$-dimension is finite.
Hypergraph regularity for hypergraphs of slice-wise finite VC-dimension

- Today we discuss the most restrictive case of measurability for hypergraphs with respect to unary sets:
- Let $\mathcal{B}_{3,1} \subseteq \mathcal{B}_3$ be the σ-algebra generated by intersections of “cylindrical” sets of the form
 $$\{(x, y, z) \in V^3 : x \in A \land y \in B \land z \in C\}$$
 for some $A, B, C \in \mathcal{B}_1$. Note: $\mathcal{B}_{3,1} \subsetneq \mathcal{B}_{3,2}$.
- $E \in \mathcal{B}_3$ has slice-wise finite VC-dimension if for (almost) every $b \in V$, the (binary) fiber
 $E_b = \{(x, y) \in V^2 : (x, y, b) \in E\} \in \mathcal{B}_2$ has finite VC-dimension (and the same for any permutation of the variables).
- $[\text{C., Starchenko}] + [\text{C., Townser}]$ $E \in \mathcal{B}_3$ is slice-wise finite VC-dimension iff $E \in \mathcal{B}_{3,1}$.
Stability and μ-stability

- Fix $E \in \mathcal{B}_2$.
- A ladder for E of height d is a tuple $\bar{a} \sim \bar{b} = (a_i : i \in d) \sim (b_i : i \in d)$ with $a_i \in V$, $b_i \in V$ such that for every $i, j \in d$ we have $(a_i, b_j) \in E \iff i \leq j$.
- E is d-stable if there are no ladders of height d for E, and stable if it is ladder d-stable for some $d \in \omega$.
- For regularity lemmas, we can ignore measure 0 ladders, so it is natural to relax the definition as follows:
- A μ-ladder for E of height d is a tuple $\bar{b} = (b_j : j \in d)$ so that for every $i \in d$ we have $\mu \left(\bigcap_{i \leq j} E_{b_j} \setminus \left(\bigcup_{j > i} E_{b_j} \right) \right) > 0$.
- For $E \in \mathcal{B}_2$, let $\text{Lad}^{\mu, E, d} \in \mathcal{B}_d$ be the set of all $\bar{b} = (b_i : i \in d)$ so that \bar{b} is a μ-ladder for E of height d.
- $E \in \mathcal{B}_2$ is d-μ-stable if $\mu \left(\text{Lad}^{\mu, E, d} \right) = 0$. And E is μ-stable if it is ladder d-μ-stable for some $d \in \omega$.
Regularity for μ-stable graphs and hypergraphs

- A set $A \in \mathcal{B}_1$ is perfect for $E \in \mathcal{B}_2$ if
 \[\mu(\{b \in V : \mu(E_b \cap A) > 0 \land \mu(A \setminus E_b) > 0\}) = 0. \]

- Note: if $A, B \in \mathcal{B}_1$ are perfect for E, then
 \[\frac{\mu(E \cap (A \times B))}{\mu(A \times B)} \in \{0, 1\}. \]

- A simplified version of [Malliaris-Shelah]: Assume that $E \in \mathcal{B}_2$ is μ-stable. Then there exist countable partitions $V = \bigsqcup_{i \in \omega} A_i$ and $V = \bigsqcup_{j \in \omega} B_j$ into perfect sets. In particular, for each $i, j \in \omega$, \[\frac{\mu(E \cap (A_i \times B_j))}{\mu(A_i \times B_j)} \in \{0, 1\}. \]

- What about hypergraphs?

- We say that $E \in \mathcal{B}_3$ is (partition-wise) μ-stable if the binary relation $E(x;yz)$ is μ-stable, and the same for any other partition of the variables.

- [C., Starchenko], [Ackerman, Freer, Patel] If $E \in \mathcal{B}_3$ is μ-stable, then there exist countable partitions A_i, B_j, C_k of V into perfect sets (for E viewed as a binary relation). In particular, for each $i, j, k \in \omega$, \[\frac{\mu(E \cap (A_i \times B_j \times C_k))}{\mu(A_i \times B_j \times C_k)} \in \{0, 1\}. \]
Let \mathcal{H} be a family of finite k-partite k-hypergraphs of the form $H = (E; X_1, \ldots, X_k)$ with $E \subseteq \prod_{i=1}^k X_i$ and X_i finite.

We say that \mathcal{H} satisfies stable regularity if for every $\varepsilon \in \mathbb{R}_{>0}$ there exists some $N = N(\varepsilon)$ such that: for any $H = (E; X_1, \ldots, X_k) \in \mathcal{H}$ and any probability measures μ_i on X_i there exists $N' \leq N$ and partitions $X_i = \bigsqcup_{0 \leq t < N'} A_{i,t}$ so that for any $0 \leq t_1, \ldots, t_k \leq N'$ we have

$$\frac{\mu \left(E \cap (A_{1,t_1} \times \ldots \times A_{k,t_k}) \right)}{\mu \left(A_{1,t_1} \times \ldots \times A_{k,t_k} \right)} \in [0, \varepsilon) \cup (1 - \varepsilon, 1],$$

where μ is the product measure of μ_1, \ldots, μ_k.

Strong ("meta-stable") stable regularity for families of finite graphs

Let \mathcal{H} be a family of finite k-partite k-hypergraphs. We say that \mathcal{H} satisfies strong stable regularity if for every $\varepsilon \in \mathbb{R}_{>0}$ and every function $f : \mathbb{N} \to (0, 1)$ there exists some $N = N(f, \varepsilon)$ such that: for any $H = (E; X_1, \ldots, X_k) \in \mathcal{H}$ and any probability measures μ_t on X_t there exists $N' \leq N$ and partitions $X_i = \bigcup_{0 \leq t < N'} A_{i,t}$ so that:

1. $\mu_i(A_{i,0}) \leq \varepsilon$ for all $1 \leq i \leq k$;
2. for any $1 \leq t_1, \ldots, t_k < N'$ we have
 \[\frac{\mu(E \cap (A_{1,t_1} \times \ldots \times A_{k,t_k})))}{\mu(A_{1,t_1} \times \ldots \times A_{k,t_k})} \in [0, f(N')) \cup (1 - f(N'), 1];\]
3. for each $1 \leq t_1 \leq N'$ we have: for all (x_2, \ldots, x_k) in $A_{2,0} \times X_3 \times \ldots \times X_k$ outside of a subset of measure $\leq f(N')$,
 \[\frac{\mu(E_{(x_2,\ldots,x_k)} \cap A_{1,t_1})}{\mu(A_{1,t_1})} \in [0, f(N')) \cup (1 - f(N'), 1],\]
 and the same for every permutation of the coordinates.
Stable regularity vs strong stable regularity

1. Conditions (1),(2) were considered [Terry, Wolf], [Chavarria, Conant, Pillay].

2. For any arity k hypergraphs, strong stable regularity implies stable regularity.

3. For any k and \mathcal{H} a family of k-ary hypergraphs, TFAE:
 - \mathcal{H} satisfies strong stable regularity;
 - in every ultraproduct $H = (E; X_1, \ldots, X_k)$ of \mathcal{H}, there exist countable partitions of each X_i into perfect sets from \mathcal{B}_1.
 - there is $d \in \mathbb{N}$ so that every $H \in \mathcal{H}$ is partition-wise d-stable.

4. For $k = 2$ and \mathcal{H} a family of graphs, everything is equivalent:
 - \mathcal{H} satisfies stable regularity;
 - \mathcal{H} satisfies strong stable regularity;
 - there exist countable perfect partitions in the ultraproduct;
 - there is $d \in \mathbb{N}$ so that every $H \in \mathcal{H}$ is d-stable.

5. But not for $k \geq 3$! The relation $E(x, y, z)$ given by $x = y < z$ satisfies stable regularity, but not strong stable regularity (so E is not partition-wise stable).

6. We view the strong version of regularity as the correct and more robust higher arity notion.
Regularity for slice-wise μ-stable hypergraphs

- [Terry-Wolf] Do slice-wise stable $E \in \mathcal{B}_3$ also satisfy stable regularity?
- (This seems to be the last remaining question about measurability with respect to unary sets.)
- We say that $E \in \mathcal{B}_3$ is slicewise μ-stable if the binary fiber $E_b \in \mathcal{B}_2$ is μ-stable for almost all $b \in V$, and the same for every permutation of the coordinates.

Theorem (C., Towsner)

No! But we have the next best thing:
Suppose that $E \in \mathcal{B}_3$ is slice-wise μ-stable. Then there exist countable partitions A_i, B_j, C_k of $V \times V$ so that: each A_i is perfect for the relation $E(xy; z)$, and $A^i = A^i \times A^i$ is a rectangle with $A^i \times A^i, A^i \times A^i \in \mathcal{B}_1$, and same for B_j, C_k with respect to the other partitions of the variables. In particular, for every i, j,
$$\frac{\mu(E(x,y,z) \cap A_i(x,y) \cap B_j(x,z))}{\mu(A_i(x,y) \cap B_j(x,z))} \in \{0, 1\}. \ (And \ same \ for \ any \ two \ out \ of \ \{A, B, C\} \ instead \ of \ A, B.)$$
So let $E \in X \times Y \times Z$ be slice-wise μ-stable.

Then for (almost) every $x \in X$, $E_x \subseteq Y \times Z$ is μ-stable, so by the stable graph regularity can decompose Y, Z into perfect sets with respect to E_x. But a priori there is no relation between such decompositions of Y, Z for different x!

To achieve uniformity, we are going to do a number of repartitions in a “definable” way.

First, a general “symmetrization” result for binary relations:
Lemma

Assume \(A \subseteq X \times Y \) with \(A \in \mathcal{B}_{X \times Y} \). Then there exist countable partitions \(X = \bigsqcup_{i \in \omega} U_i \) with \(U_i \in \mathcal{B}_X \) and \(Y = \bigsqcup_{i \in \omega} V_i \) with \(V_i \in \mathcal{B}_Y \) such that for each \(i \in \omega \) we have:

1. \(\mu \left((A \cap (U_i \times Y)) \triangle (A \cap (X \times V_i)) \right) = 0 \),

2. for any \(U' \subseteq U_i, U' \in \mathcal{B}_X \) such that both \(\mu \left(A \cap (U' \times Y) \right) > 0 \) and \(\mu \left(A \cap ((U_i \setminus U') \times Y) \right) > 0 \), for any \(V' \subseteq V_i, V' \in \mathcal{B}_Y \) we have
 \(\mu \left((A \cap (U' \times Y)) \triangle (A \cap (U_i \times V')) \right) > 0 \).

In particular, \(A \) is almost contained in the rectangles on the diagonal, that is \(\mu \left(A \setminus \bigcup_{i \in \omega} (U_i \times V_i) \right) = 0 \).
Getting μ-stable graph regularity uniformly in fibers

As mentioned earlier, we have regularity for hypergraphs of slice-wise finite VC-dimension uniformly over fibers:

Lemma
Assume $E \in B_{X \times Y \times Z}$ is such that for almost all $z \in Z$, the binary relation $E_z \in B_{X \times Y}$ is μ-NIP. Then there exist $P^i \in B^E_{X \times Z}$, $Q^i \in B^E_{Y \times Z}$ for $i \in \omega$ such that for almost every $z \in Z$ we have $\chi_{E_z}(x, y) = \sum_{i \in \omega} \chi_{P^i_z}(x) \cdot \chi_{Q^i_z}(y)$.

After some “definable” refining repartitions using this uniformity and symmetrizations, we obtain uniformity for stable partitions:

Lemma
Suppose that $E \in B_{X \times Y \times Z}$, $E_x \in B_{Y \times Z}$ is μ-stable for almost all $x \in X$. Then there is a partition of $X \times Y$ into countably many sets $A^i \in B_{X \times Y}$, $i \in \omega$, so that for almost every $x \in X$, $(A^i_x : i \in \omega)$ is a partition of Y into countably many sets perfect for E_x (viewed as a binary relation on $(X \times Y) \times Z$).
Partitioning $X \times Y$ into perfect sets

Using this and some more work we obtain a partition of $X \times Y$ into perfect sets:

Proposition. Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$, $E_x \in \mathcal{B}_{Y \times Z}$ is μ-stable for almost all $x \in X$, and $E_y \in \mathcal{B}_{X \times Z}$ is μ-stable for almost all $y \in Y$. Then there is a partition of $X \times Y$ into $\mathcal{B}_{X \times Y}^{E}$-measurable sets perfect for E, viewed as a binary relation on $(X \times Y) \times Z$.

However, we cannot hope to also partition Z into perfect sets for $E \subseteq (X \times Y) \times Z$, as we did with ordinary stability:

Take $X = Y = Z = [0, 1]$ and let $E := \{(x, y, z) : x = y < z\}$, then E is slicewise stable. Place the Lebesgue measure on Z, and place discrete measures on X and Y which place a positive measure on each rational number in $[0, 1]$. Now if $A \subseteq Z$ has positive Lebesgue measure, we can always choose $q \in \mathbb{Q} \cap [0, 1]$ so that both $A \cap [0, q)$ and $A \cap (q, 1]$ have positive measure, that is $0 < \mu (E_{(q,q)} \cap A) < \mu (A)$. But $\mu (\{(q, q)\}) > 0$, so the set A is not perfect.
One direction of stability and the opposite slicewise stability

In this special case the results we have suffice to give a positive answer to the question of Terry and Wolf.

Theorem

Assume that $E \in \mathcal{B}_{X \times Y \times Z}$ is μ-stable viewed as a binary relation between $X \times Y$ and Z, and the slices $E_z \in \mathcal{B}_{X \times Y}$ are μ-stable for almost all $z \in Z$. Then for every $\varepsilon > 0$ there exist finite partitions $X = \bigsqcup_{i \in I} X_i$, $Y = \bigsqcup_{j \in J} Y_j$, $Z = \bigsqcup_{k \in K} Z_k$ with $X_i \in \mathcal{B}_X$, $Y_j \in \mathcal{B}_Y$, $Z_k \in \mathcal{B}_Z$ so that for every $(i, j, k) \in I \times J \times K$ we have

$$\frac{\mu(E \cap (X_i \times Y_j \times Z_k))}{\mu(X_i \times Y_j \times Z_k)} \in [0, \varepsilon) \cup (1 - \varepsilon, 1].$$
But we only have slice-wise stability in all three directions! Some analysis of infinite (infinitely branching) trees of partitions, with infinite branches tackled by μ-stability on various repartitions of coordinates and slices, allows us to get:

Proposition. Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$, the slices $E_x \in \mathcal{B}_{Y \times Z}$ are μ-stable for almost all $x \in X$, and the slices $E_y \in \mathcal{B}_{X \times Z}$ are μ-stable for almost all $y \in Y$. Then there exist a countable partition $X \times Y = \bigcup_{i \in \omega} A^i$ with each $A^i \in \mathcal{B}_{X \times Y}$ perfect for the relation $E \subseteq (X \times Y) \times Z$, and a countable partition $Y \times Z = \bigcup_{j \in \omega} B^j$ into rectangles $B^j = B^j_Y \times B^j_Z$ for some $B^j_Y \in \mathcal{B}_Y$, $B^j_Z \in \mathcal{B}_Z$, so that for each $i, j \in \omega$, either $A^i \cap B^j \subseteq^0 E$ or $(A^i \cap B^j) \cap E =^0 \emptyset$.

Finally...

Finally, combining all of the above and some more repartitions, we obtain:

Proposition. Suppose that $E \in \mathcal{B}_{X \times Y \times Z}$ is slicewise μ-stable. Then there exist a countable partition $X \times Y = \bigcup_{i \in \omega} A^i$ so that each A^i is perfect for the relation $E \subseteq (X \times Y) \times Z$, and $A^i = A^i, X \times A^i, Y$ is a rectangle with $A^i, X \in \mathcal{B}_X$, $A^i, Y \in \mathcal{B}_Y$.

From which the main theorem quickly follows!

A slicewise stable counterexample to stable hypergraph regularity: Let $X := \{0, 1, 2\}^\omega$, and $(x, y, z) \in E$ holds if, for the first n such that $|x(n), y(n), z(n)| > 1$, $|x(m), y(n), z(n)| = 3$. (At the first coordinate where they are not all the same, they are all different.)
Thank you!

- “Hypergraph regularity and higher arity VC-dimension” with Henry Towsner, arXiv:2010.00726
- “A regularity lemma for slice-wise stable hypergraphs”, with Henry Towsner, in preparation