Fields and model-theoretic classification, 3

Artem Chernikov

UCLA

Model Theory conference Stellenbosch, South Africa, Jan 12 2017

Simple theories

Definition

[Shelah] A formula $\varphi(x; y)$ has the *tree property* (TP) if there is $k < \omega$ and a tree of tuples $(a_{\eta})_{\eta \in \omega^{<\omega}}$ in \mathbb{M} such that:

- ▶ for all $\eta \in \omega^{\omega}$, $\{\varphi(x; a_{\eta|\alpha}) : \alpha < \omega\}$ is consistent,
- ▶ for all $\eta \in \omega^{<\omega}$, $\{\varphi(x; a_{\eta \frown \langle i \rangle}) : i < \omega\}$ is *k*-inconsistent.
- *T* is *simple* if no formula has TP.
- ► *T* is *supersimple* if there is no such tree even if we allow to use a different formula $\phi_{\alpha}(x, y_{\alpha})$ on each level $\alpha < \omega$.
- Simplicity of T admits an alternative characterization via existence of a canonical independence relation on subsets of a saturated model of T with properties generalizing those of algebraic independence (given by Shelah's forking).
- All stable theories are simple.

Pseudofinite fields

Definition

An infinite field K is *pseudofinite* if for every first-order sentence $\sigma \in \mathcal{L}_{ring}$ there is some finite field $K_0 \models \sigma$.

- Equivalently, K is elementarily equivalent to a (non-principal) ultraproduct of finite fields.
- Ax developed model theory of pseudofinite fields, in particular giving the following algebraic characterization:

Fact

[Ax, 68] A field K is pseudofinite if and only if:

- 1. K is perfect,
- 2. K has a unique extension of every finite degree,
- 3. K is PAC.

These properties are first-order axiomatizable, and completions of the theory are described by fixing the isomorphism type of the algebraic closure of the prime field.

PAC fields

- A field F is pseudo-algebraically closed (or PAC) if every absolutely irreducible variety defined over F has an F-rational point.
- A field F is bounded if for each n ∈ N, there are only finitely many extensions of degree n.
- ▶ [Parigot] If F is PAC and not separable, then F is not NIP.
- ► [Beyarslan] In fact, every pseudofinite field interprets the random *n*-hypergraph, for all *n* ∈ N (*n* = 2 — Paley graphs).
- [Hrushovski], [Kim,Pillay] Every perfect bounded PAC field is supersimple.
- [Chatzidakis] A PAC field has a simple theory if and only if it is bounded.

Converse

• [Pillay, Poizat] Supersimple \implies perfect and bounded.

Question [Pillay]. Is every supersimple field PAC?

- ► F is PAC ⇐⇒ the set of the F-rational points of every absolutely irreducible variety over F is Zariski-dense.
- [Geyer] Enough to show for curves over F (i.e. one-dimensional absolutely irreducible varieties over F).
- ▶ [Pillay, Scanlon, Wagner] True for curves of genus 0.
- [Pillay, Martin-Pizarro] True for (hyper-)elliptic curves with generic moduli.
- [Martin-Pizarro, Wagner] True for all elliptic curves over F with a unique extension of degree 2.
- [Kaplan, Scanlon, Wagner] An infinite field K with Th (K) simple has only finitely many Artin-Schreier extension (see below).

More PAC fields

- ► No apparent conjecture for general simple fields.
- In general, PAC fields can have wild behavior. However, there are some unbounded well-behaved PAC fields.

Definition

A field F is called ω -free if it has a countable elementary substructure F_0 with $\mathcal{G}(F_0) \cong \hat{\mathbb{F}}_{\omega}$, the free profinite group on countably many generators.

- [Chatzidakis] Not simple. However, admits a notion of independence satisfying an amalgamation theorem.
- By [C., Ramsey], this implies that if F is an ω-free PAC field, then Th (F) is NSOP₁.

inp-patterns and NTP_2

• T a complete theory, \mathbb{M} a saturated model for T.

Definition

An inp-pattern of depth κ consists of $(\bar{a}_{\alpha}, \varphi_{\alpha}(x, y_{\alpha}), k_{\alpha})_{\alpha \in \kappa}$ with $\bar{a}_{\alpha} = (a_{\alpha,i})_{i \in \omega}$ from \mathbb{M} and $k_{\alpha} \in \omega$ such that:

- ► $\{\varphi_{\alpha}(x, a_{\alpha,i})\}_{i \in \omega}$ is k_{α} -inconsistent for every $\alpha \in \kappa$,
- ► $\{\varphi_{\alpha}(x, a_{\alpha, f(\alpha)})\}_{\alpha \in \kappa}$ is consistent for every $f : \kappa \to \omega$.
- ► The burden of T is the supremum of the depths of inp-patterns with x a singleton, either a cardinal or ∞.
- ► T is NTP₂ if burden of T is < ∞. Equivalently, if there is no inp-pattern of infinite depth with the same formula and k on each row.</p>
- *T* is *strong* if there is no infinite inp-pattern.
- ► T is inp-minimal if there is no inp-pattern of depth 2, with |x| = 1.
- ▶ Retroactively, *T* is *dp-minimal* if it is NIP and inp-minimal.

inp-patterns and NTP_2

- T is simple or NIP \implies T is NTP₂ (exercise).
- [C., Kaplan], [Ben Yaacov, C.], etc. There is a theory of forking in NTP₂ theories (generalizing the simple case).
- There are many new algebraic examples in this class!

Examples of NTP₂ fields: ultraproducts of *p*-adics

- We saw that for every prime p, the field \mathbb{Q}_p is NIP.
- ► However, consider the field K = ∏_p prime Q_p/U (where U is a non-principal ultrafilter on the set of prime numbers) a central object in the applications of model theory, after [Ax-Kochen], [Denef-Loeser],
- ► The theory of *K* is not simple: because the value group is linearly ordered.
- The theory of \mathcal{K} is not NIP: the residue field is pseudofinite.
- Both already in the pure ring language, as the valuation ring is definable uniformly in p [e.g. Ax].

Ax-Kochen principle for NTP_2

 Delon's transfer theorem for NIP has an analog for NTP₂ as well.

Theorem

[C.] Let $\mathcal{K} = (K, \Gamma, k, v, ac)$ be a henselian valued field of equicharacteristic 0, in the Denef-Pas language. Assume that k is NTP₂. Then \mathcal{K} is NTP₂.

Being strong is preserved as well.

Corollary

 $\mathcal{K} = \prod_{p \text{ prime}} \mathbb{Q}_p / \mathcal{U}$ is NTP₂ because the residue field is pseudofinite, hence simple, hence NTP₂.

► More recently, [C., Simon]. K is inp-minimal in L_{ring} (but not in the language with ac, of course).

Valued difference fields, 1

- (K, Γ, k, v, σ) is a valued difference field if (K, Γ, k, v, ac) is a valued field and σ is a field automorphism preserving the valuation ring.
- Note: σ induces natural automorphisms on *k* and on Γ.
- Because of the order on the value group, by [Kikyo,Shelah] there is no model companion of the theory of valued difference fields.
- ► The automorphism σ is *contractive* if for all $x \in K$ with v(x) > 0 we have $v(\sigma(x)) > nv(x)$ for all $n \in \omega$.
- Example: Let (K_p, Γ, k, v, σ) be an algebraically closed valued field of char p with σ interpreted as the Frobenius automorphism. Then Π_p prime K_p/U is a contractive valued difference field.

Valued difference fields, 2

[Hrushovski], [Durhan] Ax-Kochen-Ershov principle for σ -henselian contractive valued difference fields (K, Γ , k, v, σ , ac):

Elimination of the field quantifier.

►
$$(K, \Gamma, k, v, \sigma) \equiv (K', \Gamma', k', v, \sigma)$$
 iff $(k, \sigma) \equiv (k', \sigma)$ and $(\Gamma, <, \sigma) \equiv (\Gamma', <, \sigma)$;

- There is a model companion VFA₀ and it is axiomatized by requiring that (k, σ) ⊨ ACFA₀ and that (Γ, +, <, σ) is a divisible ordered abelian group with an ω-increasing automorphism.</p>
- Nonstandard Frobenius is a model of VFA₀.
- The reduct to the field language is a model of ACFA₀, hence simple but not NIP. On the other hand this theory is not simple as the valuation group is definable.

Valued difference fields and NTP₂

Theorem

[C., Hils] Let $\bar{K} = (K, \Gamma, k, v, ac, \sigma)$ be a σ -Henselian contractive valued difference field of equicharacteristic 0. Assume that both (K, σ) and (Γ, σ) , with the induced automorphisms, are NTP₂. Then \bar{K} is NTP₂.

Corollary

VFA₀ is NTP₂ (as ACFA₀ is simple and $(\Gamma, +, <, \sigma)$ is NIP).

- The argument also covers the case of σ-henselian valued difference fields with a value-preserving automorphism of [Belair, Macintyre, Scanlon] and the multiplicative generalizations of Kushik.
- Open problem: is VFA₀ strong?

PRC fields, 1

► F is PAC ⇔ M is existentially closed (in the language of rings) in each regular field extension of F.

Definition

[Basarab, Prestel] A field F is *Pseudo Real Closed* (or PRC) if F is existentially closed (in the ring language) in each regular field extension F' to which all orderings of F extend.

- Equivalently, for every absolutely irreducible variety V defined over F, if V has a simple rational point in every real closure of F, then V has an F-rational point.
- E.g. PAC (has no orderings) and real closed fields are PRC (no proper real closures).
- The class of PRC fields is elementary.
- Were studied by Prestel, Jarden, Basarab, McKenna, van den Dries and others.

PRC fields, 2

- If K is a bounded field, then it has only finitely many orders (bounded by the number of extensions of degree 2).
- [Chatzidakis] If a PAC field is not bounded, then it has TP₂.
 Easily generalizes to PRC.
- Conjecture [C., Kaplan, Simon]. A PRC field is NTP₂ if and only if it is bounded (and the same for PpC fields).

Fact

[Montenegro, 2015] A PRC field K is bounded if and only if Th(K) is NTP_2 .

Moreover, the burden of K is equal to the number of the orderings.

PpC fields

A valuation (F, v) is p-adic if the residue field is 𝔽_p and v (p) is the smallest positive element of the value group.

Definition

[Grob, Jarden and Haran] F is pseudo p-adically closed (PpC) if F is existentially closed (in \mathcal{L}_{ring}) in each regular extension F' such that all the p-adic valuations of M can be extended by p-adic valuations on F'.

Fact

[Montenegro, 2015] All bounded PpC fields are NTP₂.

• The converse is still open.

NTP₂ fields have finitely many Artin-Schreier extensions

- What do we know about general NTP₂ fields?
- Generalizing the simple case, we have:

Theorem

[C., Kaplan, Simon] Let K be an infinite NTP_2 field. Then it has only finitely many Artin-Schreier extensions.

Corollary $\mathbb{F}_{p}((t))$ has TP_{2} .

Ingredients of the proof

- The proof generalizes the arguments in [Kaplan-Scanlon-Wagner] for the NIP case, using a new chain condition for NTP₂ groups.
- 2. Let G be NTP₂ and { $\varphi(x, a) : a \in C$ } be a family of normal subgroups of G. Then there is some $k \in \omega$ (depending only on φ) such that for every finite $C' \subseteq C$ there is some $C_0 \subseteq C'$ with $|C_0| \leq k$ and such that

$$\left[\bigcap_{a\in C_0}\varphi(x,a):\bigcap_{a\in C'}\varphi(x,a)\right]<\infty.$$

3. Open problem: does it hold without the normality assumption?

Definable envelopes of groups in NTP_2

- ► A group G is finite-by-abelian if there exists a finite normal subgroup F of G such that G/F is abelian.
- If H, K ≤ G, H is almost contained in K if [H : H ∩ K] is finite.
- Generalizing the results of Poizat, Shelah, de Aldama, Milliet from stable, simple and NIP cases:

Fact

[Hempel, Onshuus] Let G be a group definable in an NTP_2 theory, H a subgroup of G (not necessarily definable!) and

- If H is abelian (nilpotent of class n), then there exists a definable finite-by-abelian (resp. nilpotent of class ≤ 2n) subgroup H' of G which contains (resp. almost contains) H. If H was normal, can choose H' normal as well.
- ► If H is a normal solvable subgroup of class n, there exists a definable normal solvable subgroup H' of G of class at most 2n which almost contains H.