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▶ We will discuss some results about intersection patterns for
families of events in probability spaces.

▶ On the face of it, the theorems can be stated with no mention
of mathematical logic, but curiously this topic is closely
intertwined with the developments in logic both historically
and in active current work. We will overview some of the
history, and present some new work.



Intersections in a sequence of sets of positive measure

▶ Basic fact. For every real ε > 0 and n ∈ N there exists some
N ∈ N satisfying the following. If (X ,B, µ) is a probability
space and Ai ∈ B, µ(Ai ) ≥ ε for 1 ≤ i ≤ N, then
µ
(⋂

i∈I Ai

)
> 0 for some I ⊆ [N] = {1, . . . ,N} with |I | = n.

▶ There exist more precise infinitary/density versions
(Bergelson’s lemma in dynamics).

▶ We present a slightly more conceptual proof than necessary, as
a warm up for what comes later.

▶ Suppose that we knew that the random variables
1Ai

: X → {0, 1} were independent. Then of course

µ
(⋂

i∈[n] Ai

)
=

∏
i∈[n] µ(Ai ) ≥ εn > 0.

▶ We will reduce to this case. Assume that for some fixed ε > 0
and n, no N ∈ N satisfies the claim.



Homogenizing the sequence

▶ Using Ramsey’s theorem, we can homogenize our sequence
arbitrarily well: e.g., we could assume that for any fixed δ > 0
and k , µ(Ai1 ∩ . . . ∩ Aik ) ≈δ µ(Aj1 ∩ . . . ∩ Ajk ) for any
i1 < . . . < ik , j1 < . . . < jk , and similarly for the measure of
arbitrary Boolean combinations of the Ai ’s.

▶ Using a compactness argument (e.g. taking Loeb measure on
an ultraproduct of counterexamples), we can thus find some
large probability space (X ,B, µ) and sets Ai ∈ B, µ(Ai ) ≥ ε
for i ∈ N, still intersection of any n of them has measure 0, so
that the sequence of random variables (1Ai

: i ∈ N) is
spreadable.



de Finetti’s theorem

▶ Definition. A sequence of [0, 1]-valued random variables
(ξi : i ∈ N) is spreadable if for every n ∈ N and
i1 < . . . < in, j1 < . . . < jn we have
(ξi1 , . . . , ξin) =

dist (ξj1 , . . . , ξjn).
▶ For example, every i.i.d. (independent, identically distributed)

sequence of random variables is spreadable. The converse
holds “up to mixing”:

▶ de Finetti’s theorem. If an infinite sequence of random
variables (ξi : i ∈ N) on (X ,B, µ) is spreadable then there
exists a probability space (X ′,B′, µ′), a Borel function
f : [0, 1]2 → [0, 1] and a collection of Uniform[0, 1]
i.i.d. random variables {ζi : i ∈ N} ∪ {ζ∅} on X ′ so that

(ξi : i ∈ N) =dist (f (ζi , ζ∅) : i ∈ N) .



Exchangeable vs spreadable sequences

▶ More precisely, de Finetti obtained this conclusion under a
stronger assumption that the sequence (ξi : i ∈ N) is
exchangeable, that is for any n ∈ N, any permutation
σ ∈ Sym(n) and i1 < . . . < in we have
(ξi1 , . . . , ξin) =

dist (ξiσ(1) , . . . , ξjσ(n)
).

▶ And then Ryll-Nardzewski proved that exchangeable is
equivalent to spreadable.

▶ Curiously, Ryll-Nardzewski has a well-known theorem in model
theory, but here he worked as a probabilist. It turns out that
this result is connected to a central notion in modern model
theory!



A few words about model theory

▶ Morley’s theorem: for a countable theory T , if it has only one
model of some uncountable cardinality (up to isomorphism),
then it has only one model of every uncountable cardinality.

▶ Morley’s conjecture: for a countable theory T , the number of
its models of size κ is non-decreasing on uncountable κ.

▶ In his solution of Morley’s conjecture, Shelah isolated the
importance of the class of stable theories and had developed a
lot of machinery to analyze models of stable theories.
(Stability was rediscovered many times in various contexts,
e.g. by Grothendieck in his work on Banach spaces, also in
dynamics as WAP systems, in theoretical machine learning as
Littlestone dimension)

▶ In particular, probability algebras are stable! (In continuous
logic.)



Ryll-Nardzewski = model theoretic stability of probability
algebras

▶ Implicit in Ryll-Nardzewski (“every indiscernible sequence is
totally indiscernible”), Ben Yaacov, a more general version by
Hrushovski (proved using array de Finetti, will discuss in a
minute), and Tao gave a short elementary proof:

Fact
For any 0 ≤ p < q ≤ 1 there exists N satisfying: if (X ,B, µ) is a
probability space, and A1, . . . ,An,B1, . . . ,Bn ∈ B satisfy
µ(Ai ∩ Bj) ≥ q and µ(Aj ∩ Bi ) ≤ p for all 1 ≤ i < j ≤ n, then
n ≤ N.

▶ Many applications: Hrushovski’s work on approximate
subgroups, Tao’s algebraic regularity lemma, work in
topological dynamics by Tsankov, Ibarlucia, ...

▶ Motivated by model theoretic applications, we are interested in
higher arity generalizations of these results.



Intersections in multi-parametric families of events

Theorem (C., Towsner)
For every finite bipartite graph H = (V0,W0,E0) and ε ∈ (0, 1]
there exists a finite bipartite graph G = (V ,W ,E ) and δ > 0
(depending only on H and ε) satisfying the following. Assume that
(X ,B, µ) is a probability space, and for every (v ,w) ∈ V ×W a
measurable set Av ,w ∈ B so that: for any (v ,w) ∈ E , (v ′,w ′) /∈ E
we have µ(Av ,w )− µ(Av ′,w ′) ≥ ε. Then there exists an induced
subgraph H ′ = (V ′,W ′,E ′) of G (i.e. V ′ ⊆ V ,W ′ ⊆ W and
E ′ = E ∩ (V ′ ×W ′)) isomorphic to H so that:

µ

 ⋂
(v ,w)∈E ′

Av ,w

 ∩

 ⋂
(v ,w)∈(V ′×W ′)\E ′

X \ Av ,w

 ≥ δ.



Intersecting multi-parametric families of events

▶ More generally, this holds for partite hypergraphs of any arity
instead of graphs.

▶ For us, the question is motivated by Keisler randomizations of
first-order structures and whether they preserve NIP (Ben
Yaacov, related to work of Talagrand on VC dimension for
functions) and its higher arity generalization n-dependence
(where Ben Yaacov’s analytic proof for n = 1 doesn’t seem to
generalize).

▶ An overall strategy is similar to our proof for sequences of
events, but each of the steps becomes significantly harder:
▶ extract a counterexample “exchangeable” for ordered bipartite

graphs using structural Ramsey theory,
▶ improve to exchangeability without the ordering using stability

of probability algebras,
▶ use a (generalization of) the Aldous-Hoover presentation

theorem for exchangeable arrays to pass to i.i.d. random
variables.



Structural Ramsey theory

▶ Let K be a class of finite L0-structures, where L0 is a
relational language (for example, finite graphs). For A,B ∈ K ,
let

(B
A

)
be the set of all A′ ⊆ B s.t. A′ ∼= A.

▶ K is Ramsey if for any A,B ∈ K and k ∈ ω there is some
C ∈ K s.t. for any coloring f :

(C
A

)
→ k , there is some

B ′ ∈
(C
B

)
s.t. f ↾

(B′

A

)
is constant.

▶ The usual Ramsey theorem means: the class of finite linear
orders is Ramsey. The subject of structural Ramsey theory
started with:

▶ [Nesétril, Rödl], [Abramson, Harrington] For any k ∈ N≥1, the
class of all finite ordered (partite) k-hypergraphs is Ramsey.



Infinite limits of Ramsey classes

▶ Given a K Ramsey class of finite structures, there exists a
unique (up to isomorphism) countable structure K̃ (called the
Fraïssé limit of K) so that the class of its finite substructures
is precisely K and K̃ is homogeneous, i.e. if K0 and K1 are
finite substructures of K̃ and f : K0 → K1 is an isomorphism,
then f extends to an automorphism of the whole structure K̃ .

▶ E.g., if K is the class of all graphs, its limit K̃ is the countable
Rado’s random graph; and if K is the class of finite linear
orders, then its limit is (Q, <).

▶ Understanding which structures are Ramsey is by now a big
and active subject, with connections to model theory,
topological dynamics (Ramsey property of K is equivalent to
the extreme amenability of the group Aut(K̃ ) — via the
Kechris-Pestov-Todorcevic correspondence), etc.



Finding an “exchangeable” counterexample

▶ For any k ∈ N≥1, using that the class of all finite ordered
(partite) k-hypergraphs is Ramsey, we let OHk denote its
Fraïssé limit.

▶ Assuming that the conclusion of the theorem fails, by Ramsey
and compactness (model theoretic jargon: extracting a
generalized indiscernible) we can find some large probability
space (X ,B, µ), 0 < r < s < 1 and sets Av ,w ∈ B for all v ,w
vertices of OH2 = (E ;V ,W ) so that:

▶ (v ,w) ∈ E =⇒ µ(A(v ,w)) ≥ s,
▶ (v ,w) /∈ E =⇒ µ(A(v ,w)) ≤ r ,
▶ for any two isomorphic (as ordered bipartite graphs)

substructures H1,H2 of OH2,
(1Av,w : v ,w ∈ H1) =

dist (1Av,w : v ,w ∈ H2).



Higher exchangeability theory

▶ This indiscernibility guarantees certain “exchangeability” in the
probabilistic sense. Exchangeability theory: exchangeable
sequences [de Finetti] and arrays [Aldous-Hoover-Kallenberg]
of random variables can be presented “up to mixing” using
i.i.d. random variables, and we need a certain generalization to
relational structures.

▶ More recent work on generalizations to exchangeable
structures (Ackerman, Freer, Patel, Kruckman, Crane,
Towsner, Tsankov):



Exchangeable random structures
▶ Let L′ = {R ′

1, . . . ,R
′
k ′}, R ′

i a relation symbol of arity r ′i . By a
random L′-structure we mean a (countable) collection of
random variables (

ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
on some probability space (Ω,F , µ) with ξin̄ : Ω → {0, 1}.

▶ Let now L = {R1, . . . ,Rk} be another relational language,
with Ri a relation symbol of arity ri , and let M = (N, . . .) be a
countable L-structure with domain N. We say that a random
L′-structure

(
ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
is M-exchangeable if for

any two finite subsets A = {a1, . . . , aℓ},A′ = {a′1, . . . , a′ℓ} ⊆ N

qftpL (a1, . . . , aℓ) = qftpL
(
a′1, . . . , a

′
ℓ

)
=⇒(

ξin̄ : i ∈ [k ′], n̄ ∈ Ar ′i

)
=dist

(
ξin̄ : i ∈ [k ′], n̄ ∈ (A′)r

′
i

)
.



A higher amalgamation condition on the indexing structure

▶ Let K be a collection of finite structures in a relational
language L.

▶ For n ∈ N≥1, we say that K satisfies the n-disjoint
amalgamation property (n-DAP) if for every collection of
L-structures (Mi = (Mi , . . .) : i ∈ [n]) so that
▶ each Mi is isomorphic to some structure in K,
▶ Mi = [n] \ {i}, and
▶ Mi |[n]\{i,j} = Mj |[n]\{i,j} for all i ̸= j ∈ [n],

there exists an L-structure M = (M, . . .) isomorphic to some
structure in K such that M = [n] and M|[n]\{i} = Mi for
every 1 ≤ i ≤ n.

▶ We say that an L-structure M satisfies n-DAP if the
collection of its finite induced substructures does.

▶ Ex.: the generic k-hypergraph Hk satisfies n-DAP for all n,
but (Q, <) fails 3-DAP.



Presentation for random relational structures
Fact (Crane, Towsner; generalizing Aldous-Hoover-Kallenberg)
Let L′ = {R ′

i : i ∈ [k ′]},L = {Ri : i ∈ [k]} be finite relational
languages with all R ′

i of arity at most r ′, and M = (N, . . .) a
countable homogeneous L-structure that has n-DAP for all n ≥ 1.
Suppose that

(
ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
is a random L′-structure that

is M-exchangeable, such that the relations R ′
i are symmetric with

probability 1.
Then there exists a probability space (Ω′,F ′, µ′), {0, 1}-valued
Borel functions f1, . . . , fr ′ and a collection of Uniform[0, 1]
i.i.d. random variables (ζs : s ⊆ N, |s| ≤ r ′) on Ω′ so that(

ξin̄ : i ∈ [k ′], n̄ ∈ Nr ′i

)
=dist(

fi

(
M|rng n̄, (ζs)s⊆rng n̄

)
: i ∈ [k ′], n̄ ∈ Nr ′i

)
,

where rng n̄ is the set of its distinct elements, and ⊆ denotes
“subsequence”.



Step 2: getting rid of the ordering

▶ Our counterexample is only guaranteed to be
OHn-exchangeable (and the ordering is unavoidable in the
Ramsey theorem for hypergraphs) — but the presentation
theorem requires n-DAP.

▶ Using Ryll-Nardzewski inductively, we can show
OHn-exchangeability implies Hn-exchangeability, using that
the theory of probability algebras is stable!

▶ Applying the exchangeable presentation to the
counterexample, we reduce (modulo some mixing, not hard to
take care of) to working with independent random variables.



Some questions

▶ Do there exist infinitary/density versions of these results?
▶ Apart from k-partite k-hypergraphs, which other structures

satisfy analogous theorems?
▶ [Tim Austin] Doesn’t work for graphs:

Let H be the triangle K3 and let ϵ = 1/2. Consider any
G = (V ,E ). On some probability space (Ω,Σ, µ), let
(πv : v ∈ V ) be a process of independent uniform 0, 1-valued
RVs, and consider the events Avw defined by Avw = πv ̸= πw
if vw ∈ E , and Avw = ∅ if vw ̸∈ E . Then µ(Avw ) is equal to
1/2 if vw ∈ E , but equal to 0 if vw ̸∈ E . However, for any
induced triangle in G , say with vertices u, v ,w , we have
µ(Auv ∩ Avw ∩ Awu) = µ(πu ̸= πv ̸= πw ̸= πu) = µ(∅) = 0.

▶ Apart from n-dependence, what other higher arity tameness
notions are preserved under Keisler randomization?



Thank you!
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