Proposition 0.1. Let \mathcal{M} be κ -saturated, $A \subset M^n$ with $|A| < \kappa$. $P: M^n \to [0,1]$ is definable in \mathcal{M} over A if and only if, for every $r \in [0,1]$, the sets

$$\{a \in M^n : P(a) \ge r\}, \quad \{a \in M^n : P(a) \le r\}$$

are type definable in \mathcal{M} over A.

Proof. (\Rightarrow) Let Φ : $S_n(A) \rightarrow [0, 1]$ be continuous such that, for all $a \in M^n$,

$$\Phi(\operatorname{tp}_{\mathscr{M}}(a/A)) = P(a).$$

For any $r \in [0, 1]$, $\Phi^{-1}[0, r]$ is closed, hence of the form

$$C_{\Gamma} = \{ p \in S_n(A) : \Gamma \subset p \}$$

for some $\Gamma \subset L(A)$. Thus, Γ type defines the set $\{a \in M^n : P(a) \le r\}$. For the set $\{a \in M^n : P(a) \ge r, \text{ look at } \Phi^{-1}[r, 1].$

(⇐) We show that there is a continuous $\Phi : S_n(A) \rightarrow [0,1]$ such that, for all $a \in M^n$,

$$\Phi(\operatorname{tp}_{\mathcal{M}}(a/A)) = P(a).$$

Define Φ on $S_n(A)$ by

$$\Phi(p) = P(a)$$
, where $a \models_{\mathcal{M}} p$.

Note that Φ is well defined; indeed, such an $a \in M$ exists by saturation, and by our hypothesis any $a, b \in M$ with the same type over A have P(a) = P(b). Next, we show that Φ is continuous. Fix $p \in S_n(A)$, $\epsilon > 0$. Let $r = \Phi(p)$.

Claim. $\exists \phi$ with ($\phi = 0$) $\in p$, $\exists \delta > 0$ such that $\forall a \in M^n$,

$$\varphi^{\mathcal{M}}(a) < \delta \Longrightarrow P(a) \in (r - \epsilon, 1].$$

To prove the claim, suppose it fails. Then $\forall \varphi$ with $(\varphi = 0) \in p, \forall \delta > 0$, there exists $a \in M^n$ such that $\varphi^{\mathcal{M}}(a) < \delta$ and $P(a) \le r - \epsilon$. If Γ type defines the set $\{a \in M^n : P(a) \le r - \epsilon\}$, then $p^+ \cup \Gamma$ is finitely satisfiable in \mathcal{M} . By saturation, there is $a \in M^n$ with $a \models_{\mathcal{M}} p \cup \Gamma$. But this yield the contradiciton

$$r = \Phi(p) = P(a) \le r - \epsilon$$

The claim gives us a neighborhood $[\varphi < \delta]$ of *p* such that

$$q \in [\varphi < \delta] \implies P(q) \in (r - \epsilon, 1].$$

Similarly, we can show there is a neighborhood $[\varphi' < \delta']$ of p such that

$$q \in [\varphi' < \delta'] \implies P(q) \in [0, r + \epsilon).$$

Thus, $p \in [\varphi < \delta] \cap [\varphi' < \delta'] \subset \Phi^{-1}(r - \epsilon, r + \epsilon)$. This completes the poof that Φ is continuous.