MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 1 DUE FRIDAY, APRIL 8

Problem 1. Let V denote the set of all pairs of real numbers, that is V = $\{(a,b): a, b \in \mathbb{R}\}$. For all (a_1, a_2) and (b_1, b_2) elements of V and $c \in \mathbb{R}$, we define:

(1) $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ (the usual operation of addition), (2) $c(a_1, a_2) = (ca_1, a_2).$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Problem 2. Recall that \mathbb{R}^2 is the vector space with addition and scalar multiplication given by $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ and $a(x_1, x_2) = (ax_1, ax_2)$.

(1) Give an example of a subset of \mathbb{R}^2 which is closed under addition, but not under scalar multiplication.

(that is, a set $S \subseteq \mathbb{R}^2$ such that for any two vectors from S their sum is also in S, but there is some $a \in \mathbb{R}$ and $(x, y) \in S$ such that a(x, y) is not in S).

(2) Give an example of a subset of \mathbb{R}^2 which is closed under scalar multiplication, but is not closed under addition. (that is, a set $S \subseteq \mathbb{R}^2$ such that for any $a \in \mathbb{R}$ and any $(x, y) \in S$, the vector a(x, y) is also in S, but there are some $(x_1, y_1), (x_2, y_2) \in S$ such that their sum is not in S).

Problem 3. Determine whether the following sets are subspaces of \mathbb{R}^3 . Justify your answer (if it is a subspace, prove it; if not, explain which condition fails).

- (1) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\},\$
- (2) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 5a_3\},\$
- (3) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 a_2 a_3 = 0\},\$ (4) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 + 3a_3 = 0\}.$

Problem 4. Prove that the following statements are true in any vector space Vover a field F.

- (1) 0x = 0 for each $x \in V$.
- (2) (-a) x = -(ax) = a(-x) for each $a \in F$ and each $x \in V$.
- (3) a0 = 0 for each $a \in F$ (where $0 \in V$ is the zero-vector).

(Say explicitly which of the axioms (VS1)–(VS8) you are using on each step).

Problem 5. Let S be a non-empty set and F a field, and let $\mathcal{F}(S, F)$ be the vector space of all functions from S to F. Prove that for any element $s_0 \in S$ the set $\{f \in \mathcal{F}(S, F) : f(s_0) = 0\}$ is a subspace of $\mathcal{F}(S, F)$.

Problem 6. We denote by $M_{m \times n}(F)$ the set of all $m \times n$ matrices with entries from a field F. So every element $A \in M_{m \times n}$ is of the form

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix},$$

with $A_{ij} \in F$ for all $1 \leq i \leq m, 1 \leq j \leq n$. The entries A_{ij} with i = j are called the *diagonal entries* of the matrix. $M_{m \times n}$ is a vector space over F with the following operations matrix addition and scalar multiplication: for $A, B \in M_{m \times n}(F)$ and $c \in F$, we define the matrices A + B and cA by taking $(A + B)_{ij} = A_{ij} + B_{ij}$ and $(cA)_{ij} = cA_{ij}$.

- (1) Show that $M_{m \times n}$ (\mathbb{R}) satisfies (VS3), (VS7) and (VS8).
- (2) Let W_1 be the set of all diagonal matrices in $M_{n \times n}(\mathbb{R})$ (recall that a matrix $A = (A_{ij} : 1 \le i, j \le n)$ is called *diagonal* if all its entries outside of the diagonal are zero, that is $A_{ij} = 0$ whenever $i \ne j$). Show that W_1 is a subspace of $M_{n \times n}(\mathbb{R})$.
- (3) Let W_2 be the set of all matrices in $M_{m \times n}(\mathbb{R})$ with non-negative entries (that is, $A_{ij} \geq 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$). Show that W_2 is not a subspace of $M_{m \times n}(\mathbb{R})$.

Problem 7. Prove that a subset W of a vector space V is a subspace of V if and only if $W \neq \emptyset$, and, whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$. (Hint: use Theorem 1.3)

Problem 8.

- (1) Let V be the vector space \mathbb{R}^2 . Give an example of two subspaces W_1 and W_2 of V such that their union $W_1 \cup W_2$ is not a subspace of V.
- (2) Let now V be an arbitrary vector space, and let W_1 and W_2 be subspaces of V. Show that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.