MATH 115A (CHERNIKOV), SPRING 2016
 PROBLEM SET 1
 DUE FRIDAY, APRIL 8

Problem 1. Let V denote the set of all pairs of real numbers, that is $V=$ $\{(a, b): a, b \in \mathbb{R}\}$. For all $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ elements of V and $c \in \mathbb{R}$, we define:
(1) $\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}\right)$ (the usual operation of addition),
(2) $c\left(a_{1}, a_{2}\right)=\left(c a_{1}, a_{2}\right)$.

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Problem 2. Recall that \mathbb{R}^{2} is the vector space with addition and scalar multiplication given by $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$ and $a\left(x_{1}, x_{2}\right)=\left(a x_{1}, a x_{2}\right)$.
(1) Give an example of a subset of \mathbb{R}^{2} which is closed under addition, but not under scalar multiplication.
(that is, a set $S \subseteq \mathbb{R}^{2}$ such that for any two vectors from S their sum is also in S, but there is some $a \in \mathbb{R}$ and $(x, y) \in S$ such that $a(x, y)$ is not in S).
(2) Give an example of a subset of \mathbb{R}^{2} which is closed under scalar multiplication, but is not closed under addition.
(that is, a set $S \subseteq \mathbb{R}^{2}$ such that for any $a \in \mathbb{R}$ and any $(x, y) \in S$, the vector $a(x, y)$ is also in S, but there are some $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in S$ such that their sum is not in S).

Problem 3. Determine whether the following sets are subspaces of \mathbb{R}^{3}. Justify your answer (if it is a subspace, prove it; if not, explain which condition fails).
(1) $W_{1}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=3 a_{2}\right.$ and $\left.a_{3}=-a_{2}\right\}$,
(2) $W_{2}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}=5 a_{3}\right\}$,
(3) $W_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1} a_{2} a_{3}=0\right\}$,
(4) $W_{4}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}+2 a_{2}+3 a_{3}=0\right\}$.

Problem 4. Prove that the following statements are true in any vector space V over a field F.
(1) $0 x=0$ for each $x \in V$.
(2) $(-a) x=-(a x)=a(-x)$ for each $a \in F$ and each $x \in V$.
(3) $a 0=0$ for each $a \in F$ (where $0 \in V$ is the zero-vector).
(Say explicitly which of the axioms (VS1)-(VS8) you are using on each step).
Problem 5. Let S be a non-empty set and F a field, and let $\mathcal{F}(S, F)$ be the vector space of all functions from S to F. Prove that for any element $s_{0} \in S$ the set $\left\{f \in \mathcal{F}(S, F): f\left(s_{0}\right)=0\right\}$ is a subspace of $\mathcal{F}(S, F)$.

Problem 6. We denote by $M_{m \times n}(F)$ the set of all $m \times n$ matrices with entries from a field F. So every element $A \in M_{m \times n}$ is of the form

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 n} \\
A_{21} & A_{22} & \ldots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \ldots & A_{m n}
\end{array}\right)
$$

with $A_{i j} \in F$ for all $1 \leq i \leq m, 1 \leq j \leq n$. The entries $A_{i j}$ with $i=j$ are called the diagonal entries of the matrix. $M_{m \times n}$ is a vector space over F with the following operations matrix addition and scalar multiplication: for $A, B \in M_{m \times n}(F)$ and $c \in F$, we define the matrices $A+B$ and $c A$ by taking $(A+B)_{i j}=A_{i j}+B_{i j}$ and $(c A)_{i j}=c A_{i j}$.
(1) Show that $M_{m \times n}(\mathbb{R})$ satisfies (VS3), (VS7) and (VS8).
(2) Let W_{1} be the set of all diagonal matrices in $M_{n \times n}(\mathbb{R})$ (recall that a matrix $A=\left(A_{i j}: 1 \leq i, j \leq n\right)$ is called diagonal if all its entries outside of the diagonal are zero, that is $A_{i j}=0$ whenever $i \neq j$). Show that W_{1} is a subspace of $M_{n \times n}(\mathbb{R})$.
(3) Let W_{2} be the set of all matrices in $M_{m \times n}(\mathbb{R})$ with non-negative entries (that is, $A_{i j} \geq 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$). Show that W_{2} is not a subspace of $M_{m \times n}(\mathbb{R})$.

Problem 7. Prove that a subset W of a vector space V is a subspace of V if and only if $W \neq \emptyset$, and, whenever $a \in F$ and $x, y \in W$, then $a x \in W$ and $x+y \in W$. (Hint: use Theorem 1.3)

Problem 8.

(1) Let V be the vector space \mathbb{R}^{2}. Give an example of two subspaces W_{1} and W_{2} of V such that their union $W_{1} \cup W_{2}$ is not a subspace of V.
(2) Let now V be an arbitrary vector space, and let W_{1} and W_{2} be subspaces of V. Show that $W_{1} \cup W_{2}$ is a subspace of V if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.

