MATH 115A (CHERNIKOV), SPRING 2016
 PROBLEM SET 2
 DUE FRIDAY, APRIL 15

Problem 1. Show that the vectors $(1,1,0),(1,0,1)$ and $(0,1,1)$ generate \mathbb{R}^{3}.
Problem 2. Show that a subset W of a vector space V is a subspace if and only if $\operatorname{Span}(W)=W$.

Problem 3. Let S_{1} and S_{2} be subsets of a vector space V such that $S_{1} \subseteq S_{2}$.
(1) Show that then $\operatorname{Span}\left(S_{1}\right) \subseteq \operatorname{Span}\left(S_{2}\right)$.
(2) If $\operatorname{Span}\left(S_{1}\right)=V$, deduce that $\operatorname{Span}\left(S_{2}\right)=V$.

Problem 4. Let $M_{m \times n}(\mathbb{R})$ be the vector space of all m-by- n matrices with real entries.

For an $m \times n$ matrix $A \in M_{m \times n}(\mathbb{R})$, its transpose A^{t} is the $n \times m$ matrix obtained from A by interchanging the rows with the columns. That is, $\left(A^{t}\right)_{i j}=A_{j i}$ for all $1 \leq i \leq m, 1 \leq j \leq n$. So for example if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $A^{t}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.

A symmetric matrix is a matrix A such that $A^{t}=A$ (so it has to be a square matrix, that is $m=n$).

Let W be the set of all symmetric matrices in $M_{2 \times 2}(\mathbb{R})$.
(1) Show that W is a subspace of $M_{2 \times 2}(\mathbb{R})$ (Hint: you will need to prove that $(a A+b B)^{t}=a A^{t}+b B^{t}$ for any $A, B \in M_{2 \times 2}(\mathbb{R})$ and $\left.a, b \in \mathbb{R}\right)$.
(2) Let

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Show that $\operatorname{Span}\left(\left\{A_{1}, A_{2}, A_{3}\right\}\right)=W$.
Problem 5. Consider the following sets of vectors.
(1) $\{(-1,1,2),(1,-2,1),(1,1,4)\}$ in \mathbb{R}^{3},
(2) $\{(1,-1,2),(2,0,1),(-1,2,-1)\}$ in \mathbb{R}^{3},
(3) $\left\{\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right),\left(\begin{array}{cc}-2 & 6 \\ 4 & -8\end{array}\right)\right\}$ in $M_{2 \times 2}(\mathbb{R})$.

Determine if they are linearly dependent or linearly independent (and justify).
Problem 6. Let $V=\mathbb{R}^{3}$. Find three vectors $w, v, z \in V$ with the following properties:
(1) $\operatorname{Span}(\{w, v\})=\operatorname{Span}(\{v, z\})=\operatorname{Span}(\{w, v, z\})$,
(2) $\operatorname{Span}(\{w, v, z\}) \neq \operatorname{Span}\{w, z\}$.

Suppose that w, v, z are any three vectors with the above listed properties. Prove or disprove the following statements:
(1) w, v are linearly independent.
(2) v, z are linearly independent.
(3) w, z are linearly independent.

Problem 7. Determine whether the vectors

$$
f(x)=\sin ^{2} x, g(x)=\cos ^{2} x, h(x)=1
$$

in the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} are linearly independent.
Problem 8. Give three different bases for each of the following spaces:
(1) \mathbb{R}^{2},
(2) $M_{2 \times 2}(\mathbb{R})$,
(3) $P_{2}(\mathbb{R})$.

