MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 2 DUE FRIDAY, APRIL 15

Problem 1. Show that the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 1) generate \mathbb{R}^3 .

Problem 2. Show that a subset W of a vector space V is a subspace if and only if $\operatorname{Span}(W) = W$.

Problem 3. Let S_1 and S_2 be subsets of a vector space V such that $S_1 \subseteq S_2$.

(1) Show that then $\operatorname{Span}(S_1) \subset \operatorname{Span}(S_2)$.

(2) If Span $(S_1) = V$, deduce that Span $(S_2) = V$.

Problem 4. Let $M_{m \times n}(\mathbb{R})$ be the vector space of all *m*-by-*n* matrices with real entries.

For an $m \times n$ matrix $A \in M_{m \times n}$ (\mathbb{R}), its transpose A^t is the $n \times m$ matrix obtained from A by interchanging the rows with the columns. That is, $(A^t)_{ij} = A_{ji}$ for all

 $1 \le i \le m, 1 \le j \le n$. So for example if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. A symmetric matrix is a matrix A such that $A^t = A$ (so it has to be a square

matrix, that is m = n).

Let W be the set of all symmetric matrices in $M_{2\times 2}(\mathbb{R})$.

- (1) Show that W is a subspace of $M_{2\times 2}(\mathbb{R})$ (Hint: you will need to prove that $(aA+bB)^t = aA^t + bB^t$ for any $A, B \in M_{2 \times 2}(\mathbb{R})$ and $a, b \in \mathbb{R}$).
- (2) Let

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Show that Span $(\{A_1, A_2, A_3\}) = W$.

Problem 5. Consider the following sets of vectors.

(1) $\{(-1, 1, 2), (1, -2, 1), (1, 1, 4)\}$ in \mathbb{R}^3 , (2) {(1,-1,2), (2,0,1), (-1,2,-1)} in \mathbb{R}^3 , (3) { $\begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix}$ } in $M_{2\times 2}(\mathbb{R})$.

Determine if they are linearly dependent or linearly independent (and justify).

Problem 6. Let $V = \mathbb{R}^3$. Find three vectors $w, v, z \in V$ with the following properties:

- (1) $\operatorname{Span}(\{w, v\}) = \operatorname{Span}(\{v, z\}) = \operatorname{Span}(\{w, v, z\}),$
- (2) Span $(\{w, v, z\}) \neq$ Span $\{w, z\}$.

Suppose that w, v, z are any three vectors with the above listed properties. Prove or disprove the following statements:

- (1) w, v are linearly independent.
- (2) v, z are linearly independent.
- (3) w, z are linearly independent.

MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 2 DUE FRIDAY, APRIL 152

Problem 7. Determine whether the vectors

$$f(x) = \sin^2 x, g(x) = \cos^2 x, h(x) = 1$$

in the vector space $\mathcal{F}(\mathbb{R},\mathbb{R})$ of all functions from \mathbb{R} to \mathbb{R} are linearly independent.

Problem 8. Give three *different* bases for each of the following spaces:

- (1) \mathbb{R}^2 ,
- $\begin{array}{l} (2) \quad M_{2\times 2}\left(\mathbb{R}\right), \\ (3) \quad P_{2}\left(\mathbb{R}\right). \end{array}$