MATH 115A (CHERNIKOV), SPRING 2016
 PROBLEM SET 3
 DUE FRIDAY, APRIL 22

Problem 1. Do Exercise 1, Section 1.6. Justify each answer!

Problem 2. Determine which of the following sets are bases for \mathbb{R}^{3} :
(1) $\{(1,0,-1),(2,5,1),(0,4,-3)\}$.
(2) $\{(2,-4,1),(0,3,-1),(6,0,-1),(17,3,-3)\}$.
(3) $\{(1,2,-1),(1,0,2),(2,1,1)\}$.
(4) $\{(0,1,1),(0,2,0),(1,0,0)\}$.

Problem 3. The set of solutions to the system of linear equations

$$
\begin{gathered}
x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{1}-3 x_{2}+x_{3}=0
\end{gathered}
$$

is a subspace of \mathbb{R}^{3}. Find a basis for this subspace.

Problem 4. Suppose that V is a vector space of dimension n, and let W be a subspace of V of dimension m (so $m \leq n$). Show that for every integer k such that $m \leq k \leq n$ there is a subspace U of V such that $W \subseteq U \subseteq V$ and $\operatorname{dim}(U)=k$.

Problem 5. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be a linear map with
$T(1,0,0,0)=(0,1,2)$,
$T(0,1,0,0)=(0,1,2)$,
$T(0,0,1,0)=(1,0,2)$,
$T(0,0,0,1)=(1,1,4)$.
Determine a basis for the range $R(T)$ of T, a basis for the null space $N(T)$ of T, and compute the dimension of $N(T)$.

Problem 6. Is there a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $T(1,0,-2)=$ $(1,1)$ and $T(-2,0,4)=(2,6)$?

Problem 7. Let v_{1}, \ldots, v_{n} be vectors in a vector space V over a field F. Consider the map

$$
T: F^{n} \rightarrow V,\left(a_{1}, \ldots, a_{n}\right) \mapsto a_{1} v_{1}+\ldots+a_{n} v_{n} .
$$

Show that T is linear, and moreover:
(1) T is injective if and only if $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.
(2) T is surjective if and only if $\left\{v_{1}, \ldots, v_{n}\right\}$ generates V.
(3) T is bijective if and only if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V.

Problem 8. We consider $V=M_{n \times n}(\mathbb{R})$. The trace of an $n \times n$ matrix $A \in$ $M_{n \times n}(\mathbb{R})$, denoted by $\operatorname{tr}(A)$, is the sum of the diagonal entries of A :

$$
\operatorname{tr}(A)=A_{11}+A_{22}+\ldots+A_{n n}
$$

Consider the map $T: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by $T(A)=\operatorname{tr}(A)$.
Show that it is a linear transformation, and determine the null space $N(T)$ of T and the dimension of $N(T)$.

