MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 3 DUE FRIDAY, APRIL 22

Problem 1. Do Exercise 1, Section 1.6. Justify each answer!

Problem 2. Determine which of the following sets are bases for \mathbb{R}^3 :

(1) $\{(1, 0, -1), (2, 5, 1), (0, 4, -3)\}.$ (2) $\{(2, -4, 1), (0, 3, -1), (6, 0, -1), (17, 3, -3)\}.$ (3) $\{(1, 2, -1), (1, 0, 2), (2, 1, 1)\}.$ (4) $\{(0, 1, 1), (0, 2, 0), (1, 0, 0)\}.$

Problem 3. The set of solutions to the system of linear equations

 $x_1 - 2x_2 + x_3 = 0$ $2x_1 - 3x_2 + x_3 = 0$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

Problem 4. Suppose that V is a vector space of dimension n, and let W be a subspace of V of dimension m (so $m \leq n$). Show that for every integer k such that $m \leq k \leq n$ there is a subspace U of V such that $W \subseteq U \subseteq V$ and $\dim(U) = k$.

Problem 5. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear map with

T (1,0,0,0) = (0,1,2),T (0,1,0,0) = (0,1,2),T (0,0,1,0) = (1,0,2),T (0,0,0,1) = (1,1,4).

Determine a basis for the range R(T) of T, a basis for the null space N(T) of T, and compute the dimension of N(T).

Problem 6. Is there a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, 0, -2) = (1, 1) and T(-2, 0, 4) = (2, 6)?

Problem 7. Let v_1, \ldots, v_n be vectors in a vector space V over a field F. Consider the map

$$T: F^n \to V, (a_1, \ldots, a_n) \mapsto a_1 v_1 + \ldots + a_n v_n.$$

Show that T is linear, and moreover:

- (1) T is injective if and only if $\{v_1, \ldots, v_n\}$ is linearly independent.
- (2) T is surjective if and only if $\{v_1, \ldots, v_n\}$ generates V.
- (3) T is bijective if and only if $\{v_1, \ldots, v_n\}$ is a basis for V.

Problem 8. We consider $V = M_{n \times n}(\mathbb{R})$. The *trace* of an $n \times n$ matrix $A \in M_{n \times n}(\mathbb{R})$, denoted by tr (A), is the sum of the diagonal entries of A:

$$tr(A) = A_{11} + A_{22} + \ldots + A_{nn}.$$

Consider the map $T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ defined by $T(A) = \operatorname{tr}(A)$.

Show that it is a linear transformation, and determine the null space N(T) of T and the dimension of N(T).