MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 4 DUE FRIDAY, APRIL 29

Problem 1. Do Exercise 1, Section 2.1. Justify each answer!

Problem 2. Suppose $T: V \to W$ is a linear transformation of vector spaces. Let V' be a subspace of V, and let W' be a subspace of W.

- (1) Prove that T(V') is a subspace of W.
- (2) Prove that $\{v \in V : T(v) \in W'\}$ is a subspace of V.

Problem 3. Let V and W be finite dimensional vector spaces, and let $T: V \to W$ be a linear transformation.

- (1) Prove that if $\dim(V) < \dim(W)$, then T cannot be surjective.
- (2) Prove that if $\dim(V) > \dim(W)$, then T cannot be injective.

Problem 4. Let V, W be vector spaces, and suppose $T : V \to W$ is a linear transformation. Suppose moreover that T is bijective.

Prove that if $\{v_1, \ldots, v_n\}$ is a basis for V, then $\{T(v_1), \ldots, T(v_n)\}$ is a basis for W.

Problem 5.

- (1) Give an example of distinct linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that N(T) = R(T).
- (2) Give an example of two distinct linear transformations T and U such that N(T) = N(U) and R(T) = R(U).

Problem 6. For each of the following linear transformations, compute $[T]^{\gamma}_{\beta}$.

- (1) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (2a_1 a_2, 3a_1 + 4a_2, a_1)$, for β and γ the standard bases in \mathbb{R}^2 and \mathbb{R}^3 , respectively.
- (2) $T : \mathbb{R}^n \to \mathbb{R}^n$ defined by $T(a_1, \ldots, a_n) = (a_n, a_{n-1}, \ldots, a_1)$, for $\beta = \gamma$ the standard basis in \mathbb{R}^n .

(3) $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T(A) = A^t$ for $\beta = \gamma$ the standard basis in $M_{2\times 2}(\mathbb{R})$ (i.e. $\beta = \gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$).

- (4) $T: P_2(\mathbb{R}) \to \mathbb{R}$ defined by T(f(x)) = f(2) for the standard bases $\beta = \{1, x, x^2\}$ and $\gamma = \{1\}$.
- (5) $T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b) + (2d)x + bx^2$, for β the standard basis of $M_{2\times 2}(\mathbb{R})$ and γ the standard basis of $P_2(\mathbb{R})$.

Problem 7. Let V, W be vector spaces, and let T, U be non-zero linear transformations from V to W. Prove that if $R(T) \cap R(U) = \{0\}$, then T and U are linearly independent vectors in $\mathcal{L}(V, W)$.

Problem 8. Prove Theorem 2.10.