MATH 115A (CHERNIKOV), SPRING 2016 **PROBLEM SET 5** DUE FRIDAY, MAY 6

Problem 1. Do Exercise 1, Section 2.2. Justify each answer.

Problem 2. Do Exercise 1, Section 2.3. Justify each answer.

Problem 3. Let

$$A = \begin{pmatrix} 3 & 5 & 1 & -2 \\ 2 & -1 & 3 & 4 \\ 0 & 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 & 1 \\ -3 & 0 & 0 & 1 \\ 1 & 3 & 2 & 0 \end{pmatrix}, C = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 1 & 4 & 1 \\ -1 & 3 & -1 \end{pmatrix}.$$

Compute:

(1) 2A - 3B, (2) AC - BC, (3) $B^t A - A^t B$.

Problem 4. Complete the proof of Theorem 2.12.

Problem 5. For each of the following linear transformations T, determine whether T is invertible and justify your answer.

(1) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 - 2a_2, a_2, 3a_1 + 4a_2).$ (2) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (3a_1 - a_2, a_2, 4a_1).$ (3) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(a_1, a_2, a_3) = (3a_1 - 2a_3, a_2, 3a_1 + 4a_2).$ (4) $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(p(x)) = p'(x). (5) $T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2.$ (6) $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}.$

Problem 6. Let $A, B \in M_{n \times n}(F)$ be given. Show:

- (1) If A and B are invertible, then AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- (2) If A is invertible, then A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$.
- (3) If $AB = I_n$, then A and B are invertible, and $A = B^{-1}$, $B = A^{-1}$.
- (4) If $A^2 = 0$, then A is not invertible.

Problem 7. Let V, W be finite dimensional vector spaces, and let T be an isomorphism. Let V_0 be a subspace of V. Show that $T(V_0)$ is a subspace of W, and that $\dim (V_0) = \dim (T(V_0)).$

Problem 8. Let $T: V \to W$ be a linear transformation, dim (V) = n, dim (W) =m. Let β and γ be ordered bases for V and W, respectively.

Prove that rank $(T) = \operatorname{rank}(L_A)$ and that nullity $(T) = \operatorname{nullity}(L_A)$, where $A = [T]_{\beta}^{\gamma}$. (Hint: use the previous problem.)