MATH 115A (CHERNIKOV), SPRING 2016
 PROBLEM SET 5
 DUE FRIDAY, MAY 6

Problem 1. Do Exercise 1, Section 2.2. Justify each answer.
Problem 2. Do Exercise 1, Section 2.3. Justify each answer.
Problem 3. Let

$$
A=\left(\begin{array}{cccc}
3 & 5 & 1 & -2 \\
2 & -1 & 3 & 4 \\
0 & 2 & 1 & 1
\end{array}\right), B=\left(\begin{array}{cccc}
2 & 1 & 0 & 1 \\
-3 & 0 & 0 & 1 \\
1 & 3 & 2 & 0
\end{array}\right), C=\left(\begin{array}{ccc}
3 & -2 & 1 \\
0 & 1 & 1 \\
1 & 4 & 1 \\
-1 & 3 & -1
\end{array}\right)
$$

Compute:
(1) $2 A-3 B$,
(2) $A C-B C$,
(3) $B^{t} A-A^{t} B$.

Problem 4. Complete the proof of Theorem 2.12.
Problem 5. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-2 a_{2}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(3 a_{1}-a_{2}, a_{2}, 4 a_{1}\right)$.
(3) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-2 a_{3}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(4) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
(5) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.
(6) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.

Problem 6. Let $A, B \in M_{n \times n}(F)$ be given. Show:
(1) If A and B are invertible, then $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
(2) If A is invertible, then A^{t} is invertible, and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
(3) If $A B=I_{n}$, then A and B are invertible, and $A=B^{-1}, B=A^{-1}$.
(4) If $A^{2}=0$, then A is not invertible.

Problem 7. Let V, W be finite dimensional vector spaces, and let T be an isomorphism. Let V_{0} be a subspace of V. Show that $T\left(V_{0}\right)$ is a subspace of W, and that $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.

Problem 8. Let $T: V \rightarrow W$ be a linear transformation, $\operatorname{dim}(V)=n, \operatorname{dim}(W)=$ m. Let β and γ be ordered bases for V and W, respectively.

Prove that $\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right)$ and that nullity $(T)=\operatorname{nullity}\left(L_{A}\right)$, where $A=[T]_{\beta}^{\gamma}$. (Hint: use the previous problem.)

