MATH 115A (CHERNIKOV), SPRING 2016 PROBLEM SET 8 DUE FRIDAY, MAY 27

Problem 1. Do Exercise 1, Section 5.2, parts (a) – (g). Justify each answer.

Problem 2. For each of the following matrices $A \in M_{n \times n}(\mathbb{R})$, determine if A is diagonalizable. If A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

- $(1) \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix},$ $(2) \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix},$ $(3) \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix},$ $(4) \begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}.$

Problem 3. For each of the following linear operators T on a vector space V, determine if T is diagonalizable. If T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

- (1) $V = \mathbb{R}^3$ and T is defined by $T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_2 \\ -a_1 \\ 2a_3 \end{pmatrix}$.
- (2) $V = P_2(\mathbb{R})$ and T is defined by $T(ax^2 + bx + c) = cx^2 + bx + a$. (3) $V = P_3(\mathbb{R})$ and T is defined by T(f(x)) = f'(x) + f''(x) (where f'(x)and f''(x) are the 1st and the 2nd derivatives of f(x), respectively).
- (4) $V = M_{2\times 2}(\mathbb{R})$ and T is defined by $T(A) = A^t$.

Problem 4. For
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$$
, find A^{1000} .

(Hint: reduce the problem to raising a diagonal matrix to the 1000th power).

Problem 5. Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues, λ_1 and λ_2 , and that dim $(E_{\lambda_1}) = n - 1$. Prove that A is diagonalizable.

Problem 6. Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M.

Problem 7. Let T be an invertible linear operator on a vector space V.

- (1) Prove that a scalar $\lambda \in F$ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .
- (2) Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .
- (3) Prove that if T is diagonalizable, then T^{-1} is also diagonalizable.

Problem 8. Let $A \in M_{n \times n}(F)$.

- (1) Prove that A and A^t have the same characteristic polynomial
- (2) It follows from (1) that A and A^t share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_{λ} and E'_{λ} denote the corresponding eigenspaces for A and A^t , respectively. Prove that for any eigenvalue λ , dim $(E_{\lambda}) = \dim(E'_{\lambda})$. (3) Prove that if A is diagonalizable, then A^{t} is also diagonalizable.