MATH 115A (CHERNIKOV), SPRING 2017
 PROBLEM SET 2
 DUE THURSDAY, APRIL 20

Problem 1. Let V be a vector space, v a vector in V and $S \subseteq V$. In each of the following cases, determine whether $v \in \operatorname{Span}(S)$ (and justify).
(1) $V=\mathbb{R}^{3}, v=(-1,2,1), S=\{(1,0,2),(-1,1,1)\}$,
(2) $V=P_{6}(\mathbb{R}), v=-x^{3}+2 x^{2}+3 x+3, S=\left\{x^{3}+x^{2}+x+1, x^{2}+x+1, x+1\right\}$,
(3) $V=M_{2 \times 2}(\mathbb{R}), v=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), S=\left\{\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\right\}$.

Problem 2. Let S_{1} and S_{2} be subsets of a vector space V.
(1) Prove that $\operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$.
(2) Give an example in which $\operatorname{Span}\left(S_{1} \cap S_{2}\right)$ and $\operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$ are equal, and one in which they are unequal.

Problem 3. Let V be a vector space over a field F.
(1) Prove that for any vector $v \in V, \operatorname{Span}(v)=\{a v: a \in F\}$. What does this mean geometrically in \mathbb{R}^{3} ?
(2) Let $u \neq v$ be two vectors in a vector space V over a field F. Show that the set $\{u, v\}$ is linearly dependent if and only if u is a multiple of v, or v is a multiple of u.

Problem 4. Show that a subset W of a vector space V is a subspace if and only if $\operatorname{Span}(W)=W$.

Problem 5. Let $M_{m \times n}(\mathbb{R})$ be the vector space of all m-by- n matrices with real entries.

For an $m \times n$ matrix $A \in M_{m \times n}(\mathbb{R})$, its transpose A^{t} is the $n \times m$ matrix obtained from A by interchanging the rows with the columns. That is, $\left(A^{t}\right)_{i j}=A_{j i}$ for all $1 \leq i \leq m, 1 \leq j \leq n$. So for example if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $A^{t}=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$.

A symmetric matrix is a matrix A such that $A^{t}=A$ (so it has to be a square matrix, that is $m=n$).

Let W be the set of all symmetric matrices in $M_{2 \times 2}(\mathbb{R})$.
(1) Show that W is a subspace of $M_{2 \times 2}(\mathbb{R})$ (Hint: you will need to prove that $(a A+b B)^{t}=a A^{t}+b B^{t}$ for any $A, B \in M_{2 \times 2}(\mathbb{R})$ and $\left.a, b \in \mathbb{R}\right)$.
(2) Let

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Show that $\operatorname{Span}\left(\left\{A_{1}, A_{2}, A_{3}\right\}\right)=W$.

Problem 6. Consider the following sets of vectors.
(1) $\{(1,0,0),(1,1,1)\}$ in \mathbb{R}^{3},
(2) $\left\{\left(\begin{array}{cc}1 & -3 \\ -2 & 4\end{array}\right),\left(\begin{array}{cc}-2 & 6 \\ 4 & -8\end{array}\right)\right\}$ in $M_{2 \times 2}(\mathbb{R})$,
(3) $\{(s,-r, 0),(t, 0, r),(0, t, s)\}$, where $r, s, t \in \mathbb{R}$.

Determine if they are linearly dependent or linearly independent (and justify, with case distinctions in (3) if necessary).

Problem 7. Let $V=\mathbb{R}^{3}$. Find three vectors $w, v, z \in V$ with the following properties:
(1) $\operatorname{Span}(\{w, v\})=\operatorname{Span}(\{v, z\})=\operatorname{Span}(\{w, v, z\})$,
(2) $\operatorname{Span}(\{w, v, z\}) \neq \operatorname{Span}\{w, z\}$.

Suppose that w, v, z are any three vectors in any vector space V with the above listed properties. Prove or disprove each of the following statements:
(1) w, v are linearly independent.
(2) v, z are linearly independent.
(3) w, z are linearly independent.

Problem 8. Determine which of the following sets are bases for \mathbb{R}^{3} :
(1) $\{(1,2,-1),(1,0,2),(2,1,1)\}$,
(2) $\{(2,-4,1),(0,3,-1),(6,0,-1)\}$,
(3) $\{(-1,3,1),(2,-4,-3),(-3,8,2)\}$,
(4) $\{(1,0,-1),(2,5,1),(0,-4,3),(7,2,2)\}$.

