MATH 115A (CHERNIKOV), SPRING 2017 PROBLEM SET 2 DUE THURSDAY, APRIL 20

Problem 1. Let V be a vector space, v a vector in V and $S \subseteq V$. In each of the following cases, determine whether $v \in \text{Span}(S)$ (and justify).

- (1) $V = \mathbb{R}^3$, v = (-1, 2, 1), $S = \{(1, 0, 2), (-1, 1, 1)\},$ (2) $V = P_6(\mathbb{R}), v = -x^3 + 2x^2 + 3x + 3, S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\},$ (3) $V = M_{2 \times 2}(\mathbb{R}), v = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, S = \left\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \right\}.$

Problem 2. Let S_1 and S_2 be subsets of a vector space V.

- (1) Prove that $\text{Span}(S_1 \cap S_2) \subseteq \text{Span}(S_1) \cap \text{Span}(S_2)$.
- (2) Give an example in which $\operatorname{Span}(S_1 \cap S_2)$ and $\operatorname{Span}(S_1) \cap \operatorname{Span}(S_2)$ are equal, and one in which they are unequal.

Problem 3. Let V be a vector space over a field F.

- (1) Prove that for any vector $v \in V$, Span $(v) = \{av : a \in F\}$. What does this mean geometrically in \mathbb{R}^3 ?
- (2) Let $u \neq v$ be two vectors in a vector space V over a field F. Show that the set $\{u, v\}$ is linearly dependent if and only if u is a multiple of v, or v is a multiple of u.

Problem 4. Show that a subset W of a vector space V is a subspace if and only if $\operatorname{Span}(W) = W$.

Problem 5. Let $M_{m \times n}(\mathbb{R})$ be the vector space of all *m*-by-*n* matrices with real entries.

For an $m \times n$ matrix $A \in M_{m \times n}$ (\mathbb{R}), its transpose A^t is the $n \times m$ matrix obtained from A by interchanging the rows with the columns. That is, $(A^t)_{ij} = A_{ji}$ for all $\begin{pmatrix} a & b \\ a & c \end{pmatrix}$

$$1 \le i \le m, 1 \le j \le n$$
. So for example if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $A^t = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

A symmetric matrix is a matrix A such that $A^t = A$ (so it has to be a square matrix, that is m = n).

Let W be the set of all symmetric matrices in $M_{2\times 2}(\mathbb{R})$.

- (1) Show that W is a subspace of $M_{2\times 2}(\mathbb{R})$ (Hint: you will need to prove that $(aA+bB)^t = aA^t + bB^t$ for any $A, B \in M_{2 \times 2}(\mathbb{R})$ and $a, b \in \mathbb{R}$).
- (2) Let

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Show that $\text{Span}(\{A_1, A_2, A_3\}) = W.$

Problem 6. Consider the following sets of vectors.

- (1) $\{(1,0,0),(1,1,1)\}$ in \mathbb{R}^3 ,
- (1) $\{(1, 0, 0), (1, 1, 1)\}$ in $M_{2\times 2}(\mathbb{R}), \{(1, -3), (-2, 6), (-2, -6)\}$ in $M_{2\times 2}(\mathbb{R}), \{(3), \{(s, -r, 0), (t, 0, r), (0, t, s)\}, \text{ where } r, s, t \in \mathbb{R}.$

Determine if they are linearly dependent or linearly independent (and justify, with case distinctions in (3) if necessary).

Problem 7. Let $V = \mathbb{R}^3$. Find three vectors $w, v, z \in V$ with the following properties:

- (1) $\operatorname{Span}(\{w, v\}) = \operatorname{Span}(\{v, z\}) = \operatorname{Span}(\{w, v, z\}),$
- (2) Span $(\{w, v, z\}) \neq$ Span $\{w, z\}$.

Suppose that w, v, z are any three vectors in any vector space V with the above listed properties. Prove or disprove each of the following statements:

- (1) w, v are linearly independent.
- (2) v, z are linearly independent.
- (3) w, z are linearly independent.

Problem 8. Determine which of the following sets are bases for \mathbb{R}^3 :

- $(1) \{(1,2,-1),(1,0,2),(2,1,1)\},\$
- $(2) \ \{(2,-4,1), (0,3,-1), (6,0,-1)\},\$
- $(3) \{(-1,3,1), (2,-4,-3), (-3,8,2)\},\$
- $(4) \ \{(1,0,-1),(2,5,1),(0,-4,3),(7,2,2)\}.$