MATH 115A (CHERNIKOV), SPRING 2017 PROBLEM SET 3 DUE THURSDAY, APRIL 27

Problem 1. Do Exercise 1, Section 1.6. Justify each answer!

Problem 2. Determine which of the following sets are bases for $P_2(\mathbb{R})$ and justify your answer:

 $\begin{array}{l} (1) \ \left\{5+12x, 6-x, 3+18x\right\}. \\ (2) \ \left\{1+2x+x^2, 3+x^2, x+x^2\right\}. \\ (3) \ \left\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\right\}. \\ (4) \ \left\{1+2x-x^2, 4-2x+x^2, -1+18x-9x\right\}. \\ (5) \ \left\{1+2x+x^2, 1-x+6x^2, 3-4x-10x^2, 16x^2\right\}. \end{array}$

Problem 3. The set of solutions to the system of linear equations

 $x_1 - 2x_2 + x_3 = 0$ $2x_1 - 3x_2 + x_3 = 0$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

Problem 4. Suppose that V is a vector space of dimension n, and let W be a subspace of V of dimension m (so $m \leq n$). Show that for every integer k such that $m \leq k \leq n$ there is a subspace U of V such that $W \subseteq U \subseteq V$ and dim(U) = k.

Problem 5. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be a linear map with

$$\begin{split} T & (1,0,0,0) = (0,1,2), \\ T & (0,1,0,0) = (0,1,2), \\ T & (0,0,1,0) = (1,0,2), \\ T & (0,0,0,1) = (1,1,4). \end{split}$$

Determine a basis for the range R(T) of T, a basis for the null space N(T) of T, and compute the dimension of N(T).

Problem 6. Is there a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that T(1, 0, -2) = (1, 1) and T(-2, 0, 4) = (2, 6)?

Problem 7. We consider $V = M_{n \times n}(\mathbb{R})$. The *trace* of an $n \times n$ matrix $A \in M_{n \times n}(\mathbb{R})$, denoted by tr (A), is the sum of the diagonal entries of A:

$$\operatorname{tr}(A) = A_{11} + A_{22} + \ldots + A_{nn}.$$

Consider the map $T: M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ defined by $T(A) = \operatorname{tr}(A)$.

Show that it is a linear transformation, and determine the null space N(T) of T and the dimension of N(T).

Problem 8. Let v_1, \ldots, v_n be vectors in a vector space V over a field F. Consider the map

 $T: F^n \to V, (a_1, \dots, a_n) \mapsto a_1 v_1 + \dots + a_n v_n.$

Show that T is linear, and moreover:

- T is injective if and only if {v₁,..., v_n} is linearly independent.
 T is surjective if and only if {v₁,..., v_n} generates V.
 T is bijective if and only if {v₁,..., v_n} is a basis for V.