MATH 115A (CHERNIKOV), SPRING 2017
 PROBLEM SET 4 DUE THURSDAY, MAY 04

Problem 1. Do Exercise 1, Section 2.1. Justify each answer!
Problem 2. Suppose $T: V \rightarrow W$ is a linear transformation of vector spaces. Let V^{\prime} be a subspace of V, and let W^{\prime} be a subspace of W.
(1) Prove that $T\left(V^{\prime}\right)$ is a subspace of W.
(2) Prove that $\left\{v \in V: T(v) \in W^{\prime}\right\}$ is a subspace of V.

Problem 3. Let V and W be finite dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation.
(1) Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T cannot be surjective.
(2) Prove that if $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T cannot be injective.

Problem 4. Let V, W be vector spaces, and suppose $T: V \rightarrow W$ is a linear transformation. Suppose moreover that T is bijective.

Prove that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for W.

Problem 5.

(1) Give an example of distinct linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $N(T)=R(T)$.
(2) Give an example of two distinct linear transformations T and U such that $N(T)=N(U)$ and $R(T)=R(U)$.
Problem 6. For each of the following linear transformations, compute $[T]_{\beta}^{\gamma}$.
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}-a_{2}, 3 a_{1}+4 a_{2}, a_{1}\right)$, for β and γ the standard bases in \mathbb{R}^{2} and \mathbb{R}^{3}, respectively.
(2) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $T\left(a_{1}, \ldots, a_{n}\right)=\left(a_{n}, a_{n-1}, \ldots, a_{1}\right)$, for $\beta=\gamma$ the standard basis in \mathbb{R}^{n}.
(3) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T(A)=A^{t}$ for $\beta=\gamma$ the standard basis in $M_{2 \times 2}(\mathbb{R})$ (i.e. $\beta=\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
(4) $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by $T(f(x))=f(2)$ for the standard bases $\beta=$ $\left\{1, x, x^{2}\right\}$ and $\gamma=\{1\}$.
(5) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a+b)+(2 d) x+b x^{2}$, for β the standard basis of $M_{2 \times 2}(\mathbb{R})$ and γ the standard basis of $P_{2}(\mathbb{R})$.

Problem 7. Let V, W be vector spaces, and let T, U be non-zero linear transformations from V to W. Prove that if $R(T) \cap R(U)=\{0\}$, then T and U are linearly independent vectors in $\mathcal{L}(V, W)$.

Problem 8. Prove Theorem 2.10.

