MATH 115A (CHERNIKOV), SPRING 2017
 PROBLEM SET 5 DUE THURSDAY, MAY 11

Problem 1. Do Exercise 1, Section 2.2. Justify each answer.
Problem 2. Do Exercise 1, Section 2.3. Justify each answer.
Problem 3. Let V, W, Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.
(1) Prove that if $U T$ is injective, then T is injective. Must U also be injective? Justify your answer.
(2) Prove that if $U T$ is surjective, then U is surjective. Must T also be surjective? Justify your answer.
(3) Prove that if U and T are bijective, then $U T$ is also bijective.

Problem 4. Let $g(x)=3+x$. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ and $U: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be linear transformations defined by

$$
T(f(x))=f^{\prime}(x) g(x)+2 f(x)
$$

and

$$
U\left(a+b x+c x^{2}\right)=(a+b, c, a-b)
$$

Let β and γ be the standard ordered bases of $P_{2}(\mathbb{R})$ and \mathbb{R}^{3}, respectively.
(1) Compute $[U]_{\beta}^{\gamma},[T]_{\beta}$. Compute $[U T]_{\beta}^{\gamma}$ in two ways: directly and using Theorem 2.11.
(2) Let $h(x)=3-2 x+x^{2}$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (1) and Theorem 2.14 to verify your result.

Problem 5. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
(1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-2 a_{2}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(2) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(3 a_{1}-a_{2}, a_{2}, 4 a_{1}\right)$.
(3) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-2 a_{3}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(4) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
(5) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.
(6) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.

Problem 6. Let $A, B \in M_{n \times n}(F)$ be given. Show:
(1) If A and B are invertible, then $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
(2) If A is invertible, then A^{t} is invertible, and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
(3) If $A B=I_{n}$, then A and B are invertible, and $A=B^{-1}, B=A^{-1}$.
(4) If $A^{2}=0$, then A is not invertible.

Problem 7. Let V, W be finite dimensional vector spaces, and let T be an isomorphism. Let V_{0} be a subspace of V. Show that $T\left(V_{0}\right)$ is a subspace of W, and that $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.
Problem 8. Let $T: V \rightarrow W$ be a linear transformation, $\operatorname{dim}(V)=n, \operatorname{dim}(W)=$ m. Let β and γ be ordered bases for V and W, respectively.

Prove that $\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right)$ and that nullity $(T)=\operatorname{nullity}\left(L_{A}\right)$, where $A=[T]_{\beta}^{\gamma}$. (Hint: use the previous problem.)

