MATH 115A (CHERNIKOV), SPRING 2017 PROBLEM SET 5 DUE THURSDAY, MAY 11

Problem 1. Do Exercise 1, Section 2.2. Justify each answer.

Problem 2. Do Exercise 1, Section 2.3. Justify each answer.

Problem 3. Let V, W, Z be vector spaces, and let $T: V \to W$ and $U: W \to Z$ be linear transformations.

- (1) Prove that if UT is injective, then T is injective. Must U also be injective? Justify your answer.
- (2) Prove that if UT is surjective, then U is surjective. Must T also be surjective? Justify your answer.
- (3) Prove that if U and T are bijective, then UT is also bijective.

Problem 4. Let g(x) = 3 + x. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U: P_2(\mathbb{R}) \to \mathbb{R}^3$ be linear transformations defined by

$$T(f(x)) = f'(x)g(x) + 2f(x)$$

and

$$U(a + bx + cx^2) = (a + b, c, a - b).$$

Let β and γ be the standard ordered bases of $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively.

- (1) Compute $[U]^{\gamma}_{\beta}$, $[T]_{\beta}$. Compute $[UT]^{\gamma}_{\beta}$ in two ways: directly and using Theorem 2.11.
- (2) Let $h(x) = 3 2x + x^2$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (1) and Theorem 2.14 to verify your result.

Problem 5. For each of the following linear transformations T, determine whether ${\cal T}$ is invertible and justify your answer.

- (1) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 2a_2, a_2, 3a_1 + 4a_2).$
- (2) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (3a_1 a_2, a_2, 4a_1).$
- (3) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(a_1, a_2, a_3) = (3a_1 2a_3, a_2, 3a_1 + 4a_2).$
- (4) $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(p(x)) = p'(x).

(5)
$$T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$.
(6) $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.

Problem 6. Let $A, B \in M_{n \times n}(F)$ be given. Show:

- (1) If A and B are invertible, then AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- (2) If A is invertible, then A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$. (3) If $AB = I_n$, then A and B are invertible, and $A = B^{-1}$, $B = A^{-1}$.
- (4) If $A^2 = 0$, then A is not invertible.

MATH 115A (CHERNIKOV), SPRING 2017 PROBLEM SET 5 DUE THURSDAY, MAY 112

Problem 7. Let V, W be finite dimensional vector spaces, and let T be an isomorphism. Let V_0 be a subspace of V. Show that $T(V_0)$ is a subspace of W, and that $\dim(V_0) = \dim(T(V_0))$.

Problem 8. Let $T: V \to W$ be a linear transformation, dim (V) = n, dim (W) = m. Let β and γ be ordered bases for V and W, respectively.

Prove that rank $(T) = \operatorname{rank}(L_A)$ and that nullity $(T) = \operatorname{nullity}(L_A)$, where $A = [T]_{\beta}^{\gamma}$. (Hint: use the previous problem.)