MATH 115A (CHERNIKOV), SPRING 2017
 PROBLEM SET 7
 DUE THURSDAY, MAY 25

Problem 1. Do Exercise 1, Section 4.4. Justify each answer.
Problem 2. Do Exercise 1, Section 5.1. Justify each answer.
Problem 3. Let V be an n-dimensional vector space, and suppose that $T \in \mathcal{L}(V)$ is invertible. Determine the characteristic polynomial of T^{-1} in terms of the characteristic polynomial of T.

Problem 4. Let V be a finite dimensional vector space. Prove that a linear operator $T \in \mathcal{L}(V)$ is invertible if and only if 0 is not an eigenvalue of T.
Problem 5. For each of the following linear operators T on a vector space V and ordered bases β, compute $[T]_{\beta}$ and determine whether β is a basis consisting of eigenvectors of T.
(1) $V=\mathbb{R}^{2}, T\binom{a}{b}=\binom{10 a-6 b}{17 a-10 b}$, and $\beta=\left\{\binom{1}{2},\binom{2}{3}\right\}$.
(2) $V=P_{1}(\mathbb{R}), T(a+b x)=(6 a-6 b)+(12 a-11 b) x$, and $\beta=\{3+4 x, 2+3 x\}$.
(3) $V=M_{2 \times 2}(\mathbb{R}), T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}-7 a-4 b+4 c-4 d & b \\ -8 a-4 b+5 c-4 d & d\end{array}\right)$ and

$$
\beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
2 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)\right\}
$$

Problem 6. Determine the eigenvalues and eigenvectors for each of the following matrices in $M_{3 \times 3}(\mathbb{R})$.
(1) $A=\left(\begin{array}{ccc}0 & -2 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 5\end{array}\right)$.
(2) $B=\left(\begin{array}{lll}2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1\end{array}\right)$.

Problem 7. For each linear operator T on V, find the eigenvalues of T and an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
(1) $V=\mathbb{R}^{2}$ and $T(a, b)=(-2 a+3 b,-10 a+9 b)$.
(2) $V=P_{2}(\mathbb{R})$ and $T(f(x))=x f^{\prime}(x)+f(2) x+f(3)$.
(3) $V=M_{2 \times 2}(\mathbb{R})$ and $T(A)=A^{t}+2 \operatorname{tr}(A) \cdot I_{2}$.

Problem 8. Suppose that $T \in \mathcal{L}(V)$ is such that every non-zero vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.

