MATH 115A (CHERNIKOV), SPRING 2017
 PROBLEM SET 8
 DUE THURSDAY, JUNE 1

Problem 1. Do Exercise 1, Section 5.2, parts (a) - (g). Justify each answer.
Problem 2. For each of the following matrices $A \in M_{n \times n}(\mathbb{R})$, determine if A is diagonalizable. If A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1} A Q=D$.
(1) $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$,
(2) $\left(\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right)$,
(3) $\left(\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right)$,
(4) $\left(\begin{array}{lll}7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3\end{array}\right)$.

Problem 3. For each of the following linear operators T on a vector space V, determine if T is diagonalizable. If T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
(1) $V=\mathbb{R}^{3}$ and T is defined by $T\left(\begin{array}{c}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} \\ -a_{1} \\ 2 a_{3}\end{array}\right)$.
(2) $V=P_{2}(\mathbb{R})$ and T is defined by $T\left(a x^{2}+b x+c\right)=c x^{2}+b x+a$.
(3) $V=P_{3}(\mathbb{R})$ and T is defined by $T(f(x))=f^{\prime}(x)+f^{\prime \prime}(x)$ (where $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are the 1st and the 2nd derivatives of $f(x)$, respectively).
(4) $V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T(A)=A^{t}$.

Problem 4. For $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$, find A^{1000}.
(Hint: reduce the problem to raising a diagonal matrix to the 1000th power).
Problem 5. Suppose that $A \in M_{n \times n}(F)$ has two distinct eigenvalues, λ_{1} and λ_{2}, and that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=n-1$. Prove that A is diagonalizable.

Problem 6. Prove that the eigenvalues of an upper triangular matrix M are the diagonal entries of M.

Problem 7. Let T be an invertible linear operator on a vector space V.
(1) Prove that a scalar $\lambda \in F$ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}.
(2) Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1}.
(3) Prove that if T is diagonalizable, then T^{-1} is also diagonalizable.

Problem 8. Let $A \in M_{n \times n}(F)$.
(1) Prove that A and A^{t} have the same characteristic polynomial
(2) It follows from (1) that A and A^{t} share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^{t}, let E_{λ} and E_{λ}^{\prime} denote the corresponding eigenspaces for A and A^{t}, respectively.
Prove that for any eigenvalue $\lambda, \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(E_{\lambda}^{\prime}\right)$.
(3) Prove that if A is diagonalizable, then A^{t} is also diagonalizable.

