MATH 115A (CHERNIKOV), SPRING 2017 PROBLEM SET 9

DUE THURSDAY, JUNE 08

Problem 1. Do Exercise 1, Section 6.1. Justify each answer.

Problem 2. Show that each of the following is **not** an inner product on the given vector spaces.

- (1) $\langle (a,b), (c,d) \rangle = ac bd$ on \mathbb{R}^2 .
- (2) $\langle A, B \rangle = \operatorname{tr}(A + B)$ on $M_{2 \times 2}(\mathbb{R})$.
- (3) $\langle f(x), g(x) \rangle = \int_0^1 f'(t) g(t) dt$ on $P(\mathbb{R})$, where ' denotes differentiation.

Problem 3. Determine if there is an inner product on \mathbb{R}^2 such that the associated norm satisfies ||(x,y)|| = |x| + |y| for all $x,y \in \mathbb{R}$. In either of the cases, justify it with a proof.

Problem 4. Let V be an inner product space, and suppose that x and y are orthogonal vectors in V. Prove that $||x+y||^2 = ||x||^2 + ||y||^2$. Deduce the Pythagorean theorem in \mathbb{R}^2 from it.

Problem 5. Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is injective.

Problem 6. Do Exercise 1, Section 6.2. Justify each answer.

Problem 7. Apply the Gram-Schmidt process to the given subset S of the inner product space V to obtain an orthogonal basis for $\mathrm{Span}\,(S)$. Then normalize the vectors in this basis to obtain an orthonormal basis β for $\mathrm{Span}\,(S)$.

- (1) $V = \mathbb{R}^3$ with the dot product and $S = \{(1,0,1), (0,1,1), (1,3,3)\}.$
- (2) $V = P_2(\mathbb{R})$ with the inner product $\langle f(x), g(x) \rangle = \int_0^1 f(t) g(t) dt$ and $S = \{1, x, x^2\}.$
- (3) $V = M_{2\times 2}(\mathbb{R})$ with the Frobenius inner product and

$$S = \left\{ \begin{pmatrix} 3 & 5 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 9 \\ 5 & -1 \end{pmatrix}, \begin{pmatrix} 7 & -17 \\ 2 & -6 \end{pmatrix} \right\}.$$

Problem 8. Let β be a basis for a subspace W of an inner product space V, and let $z \in V$. Prove that $z \in W^{\perp}$ if and only if $\langle z, v \rangle = 0$ for every $v \in \beta$.