(115 A Reminder Chapter I + II)

Vector spaces Definition A rector space V over a field F is a set with two operations, addition and scalar multiplication, (so for any x,y in V and a \in F, x+y and ax are in V) such that the following conditions hold. (VSI) x + y = y + x for all x,y in V (commutativity) (VS2) (x+y) + 2 = x + (y+2) for all x,y, z in V (associativity) (VS3) There exists an element o in V such that x+0 = x for all $x \in V$. (identity) (VS4) For each x in V there is an element y in V such that x+y = 0 (y is an inverse of x) (VS5) $1 \cdot x = x$ for all x in V (where I is the multiplicative identity of F). (VS6) a(bx) = (ab)x for all x in V and a,b in F (VS7) a(x+y) = ax+ay for all a in F and x,y in V. (VS8) (a+b)x = ax+ay for all a in F and x in V. Elements of V are called vectors. Elements of F are called scalars.

Theorem 1.1 (cancellation law) Let V be a v.s. and let $x, y, z \in V$. I + x + z = y + z, then x = y.

Corollary.

1) In any vector space V, there is a unique element 0 satisfying (183) — the zero vector of V. 2) For any v.s. V and any x in V, there is a unique element y in V satisfying (184). It is called the inverse of x, and denoted by -x.

Theorem 1.2. Let V be a v.s. over F.

For all x in V and a in F we have: 1) $0 \cdot x = 0$ (Note: the 1st 0 is a scalar in F, the 2^{trd} one is the zero vector in V). 2) $(-a) \cdot x = -(ax) = a(-x)$ 3) $a \cdot 0 = 0$ (Note: this is the zero vector of V on both sides).

Subspares.

Definition. Let V be a v.s. A subset W = V is a subspace of V if W itself is a v.s. with respect to the addition and scalar multiplication defined on V.

Theorem 1.3. Let V be a v.s., and let W = V be a subset of V. Then W is a subspace of V if and only if all of the following couditions hold: (a) $0 \in W$

(b) x+y ∈ W for all x, y ∈ W (W is closed under addition)

(c) c x e W for all CEF and XEW (W is closed under scalar multiplication).

Theorem 1.4. Let V be a v.s. over F.

 $I_f = W_1, \dots, W_n$ are subspaces of V, then the set $W = W_1 \cap W_2 \cap \dots \cap W_n$ is also a subspace of V.

Linear combinations

Definition. Let V be a.r.s., and let $S \leq V$ be a non-empty subset of V. 1) A vector v in V is a linear combination of S if one can write $V = a_1u_1 + a_2u_2 + \dots + a_nu_n$

 $V = a_1u_1 + a_2u_2 + \dots + a_nu_n$ for some vectors $u_{1,1}, \dots, u_n$ in S and some scalars $a_{1,1}, \dots, a_n$ in F. 2) The span of S, denoted Span(S), is the subset of V consisting precisely of all linear combinations of S. That is, Span(S) = ξ a, u, + ... + a, u_n : n ∈ N, q; ∈ F, u; ∈ S ξ. For convenience, we define Span(Ø) = ξoξ.

Theorem 1.5. Let S be any subsect of a v.s. V. Then: 1) Span(S) is a subspace of V. 2) Any subspace of V that contains S must also contain Span(S).

Definition. Let V be a v.s. and S a subset of V. We say that S generates (or spans) V if Span(S) = V.

Perinition. A subset S of a v.s. V is linearly dependent if there exist a finite number of distinct vectors u,..., un in S and scalars a,..., an E F, with at least one a; to, such that a, u, t ... t an un = 0. We call S linearly independent if it is not linearly dependent.

Theorem 1.6. Let V be a v.s. and $S_1 \subseteq S_2 \subseteq V$ be two subsets of V. 1) If S, is lin dependent, then S_2 is also linearly dependent. 2) If S_2 is lin indep., then S₁ is also lin indep.

Theorem 1.7. Let S be a lin, indep. subset of a vector space V. Let V be any vector in V not constained in S. Then SUEV3 is lin.dep. if and only if veSpan(S).

Bases and dimension.

Definition. A basis for a v.s. V is a subset of V which is lin indep. and generastes V.

Theorem 1.8. A subset $\xi U_{1,...,} U_{n} \xi$ of a v.s. V is a fasis if and only if every vector $v \in V$ can be written uniquely in the form $V = a_{1}U_{1} + ... + a_{n}U_{n}$,

where a; +F.

(so "uniquely" here means that there is only one possible choice of the scalars a, ..., an EF satisfying the equality)

Theorem 1.9. It a v.s. V is generated by a finite subset S, then some subset of S is a tosis for V. It follows that every finitely generated v.s. has a basis.

Theorem 1. 10. (Replacement theorem)

Let V be a v.s. generated by a set $G \subseteq V$ with |G|=n, and let L be a lin. indep subset of V, |L|=m. Then $m \leq n$, and there exists $H \subseteq G$ with |H|=n-m such that L ut generates V.

Corollary 1. Let V be a finitely generated v.s. Then every basis for V has the same number of elements.

Petinition. A r.s. V is finite-dimensional it it has a finite basis.

The (unique) number of vectors in a basis for V is called the dimension of V, denoted dim (V). If there is no finite basis, then V is infinite-dimensional.

Corollary 2. Let V be a v.s. of dimension n. Then:

a) Any generating set for V must contain at least n rectors.
6) Any lin indep. subset of V with n elements is a basis.
c) Every lin. indep. subset of V can be extended to a basis for V.
herrem 1.11. Lost W be a subspace of a v.s. V with dim(V) 200.
$\int W dim(W) \leq dim(V).$
(10) relation (10) - (100) - (100)
Linear transformations
Det Let V and W be v.s. over the same field of scalars F.
A lin. transformation from V to W is a function T: V->W satisfying
$\frac{1}{1} \frac{1}{x+y} = \frac{7}{x} + \frac{7}{y} + \frac{7}$
$\binom{2}{(cx)} = c l(x) \qquad \text{for all } x \in V \text{ and } c \in \Gamma.$
Properties of lin trancformations
1) Let T: V -> W be a lin trank. Then:
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ $
$\beta_{i} T \left(\sum_{i=1}^{n} \alpha_{i} x_{i} \right) = \sum_{i=1}^{n} \alpha_{i} T(x_{i}) \text{for all } x_{i} \in V, \alpha_{i} \in F.$
$ (2) \land function 1: \lor \rightarrow \lor is a lin. trang. (=> 1 (cx+y) = c \cdot l(x) + l(y) for aM x, y \in \lor, c \in I. $
Three 20 Let 1/ W layer us mere a right E and bet Sy y 2 to a facis in 1
Then in any vertice w we cla there exists everthe one line transe T:V ->W st
$T(v_i) = W; for 1 \le j \le n$
Der Let T: V -> W le a lin. framsf.
1) T is injective if T(v) = T(u) imilies V=4, for all 4, V 6 V.
2) T is surjective if for every we'W there is some veV s.t. T(v)=W.
3) T is bijective if it is both injective and surjective.
Mull charge and Kanno
Day let V.W be us and T: V->W a lin. transc.
1) The null space of T is defined as
$N(T) = \{x \in V : T(x) = 0\}.$
2) The range of T is the image of V under T, that is the set
$R(T) = \{y \in W : y = T(x) \text{ for some } x \in V\}.$
1) N(T) is a subspace of V
2) R(T) is a subspace of W.
Thm 2.4 Let T: V-W be a lin. transf. Thm 2.2. Let T: V-W be a lin. transf.
(1) T is injective $\angle = > N(T) = \frac{2}{3}$. Assume $p = \frac{2}{3}v_{1},, v_{n}$ is a basis for V.
$ (z) T is surjective => R(\tau) = W. $ Then $R(\tau) = Span(\{T(v_1),, T(v_n)\}). $
TI 22 (Nimerican Transmi)
Let V bl la up T: V = bl a lin transa and dim (11) in There
dim(V) = dim(N(T)) + dim(R(T))

Then 2.5 Let T: V->W be a lin, transp., and assume dim(V) = dim(W).	
Then the following are equivalent:	
1) T is injective.	
2) T is surjective.	
3) T is bijective.	
4) dim $(R(T)) = \dim(V)$.	

The vector space of linear transformations $\mathcal{L}(V,W)$. Def. Let V,W be v.s. over F, and let $T, U: V \rightarrow W$ be linear transformations. Then we define the functions T+U and aT, for every $a \in F$, by : (T+U)(x) = T(x) + U(x) for all $x \in V$. $(aT)(x) = a \cdot T(x)$ for all $x \in V$.

Thm 2.7

If T and U are linear, then T+U and a U are also linear.

Def We denote the set of all lin. transp.'s from V to W by $\mathcal{L}(V,W)$.

Then it is a v.s. over F, with the operations of addition and scalar multiplication described above.

When W = V, we write $\mathcal{L}(V)$ instead of $\mathcal{L}(V, V)$.

Matrix representation of a lin. transf.

Det Let V be a v.s. with dim(V) 200. An ordered basis for V is a basis for V with a specified order on its vectors.

Det Let
$$\mathcal{B} = \{v_1, ..., v_n\}$$
 be an ordered basis for V .
Then any vector $x \in V$ can be written as
 $X = a, v_1 + ... + a_n v_n$ for some unique scalars $a, ..., a_n \in F$.
We define the coordinate vector of X relative to \mathcal{B} by
 $[X]_{\mathcal{B}} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n$.

Let
$$V, W$$
 be vs. with ordered bases $B = \{V_1, ..., V_n\}$ and $S = \{W_1, ..., W_m\}$, respectively.
Let $T: V \rightarrow W$ be a lin. transformation.
Then the matrix representation of T in the ordered bases p_2 and S is defined as
the matrix $[T]_p^{\mathcal{B}} \in M_{m \times n}(F)$ given by
 $[T]_p^{\mathcal{B}} = \left([T(v_i)]_{\mathcal{F}} [T(v_i)]_{\mathcal{F}} \cdots [T(v_n)]_{\mathcal{F}} \right),$
where $[T(v_i)]_{\mathcal{F}}$ are the coordinates of the vector $T(V_i) \in W$ with respect to the basis S .
If $V = W$ and $B = S$, we simply write $[T]_p$.
Thus 2.8
Let V, W be fin.dim. v.s.'s with ordered bases p and S , resp.
Let $T, U : V \rightarrow W$ be lin. transformations. Then:
1) $U = T$ (meaning that $U(w) = T(x)$ for all $x \in V$) $Z = > [U]_p^{\mathcal{B}} = [T]_p^{\mathcal{B}}$.
2) $[T+U]_p^{\mathcal{B}} = [T]_p^{\mathcal{B}} + [U]_p^{\mathcal{B}}$.
3) $[aT]_p^{\mathcal{B}} = a \cdot [T]_p^{\mathcal{B}}$ for all $a \in F$.

Composition of lin. transf's and matrix multiplication. Def Let V, W, Z be v.s.'s over F. Let T: V ->W and U: W -> Z be lin. transf's. Their composition is the function UT, from V to Z, defined by (UT)(x) = U(T(x)) for all x eV. Thm 2.3 If T and U are linear, then UT is also linear.

Det Given matrices
$$A \in M_{m \times n}(F)$$
 and $B \in M_{n \times p}(F)$, we define the product $AB \in M_{m \times p}(F)$ to be the matrix with the entries
$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} , \text{ for } i \leq i \leq m, i \leq j \leq f.$$

Thm 2.11 Let V,W,Z be fin. dim. v.s.'s with ordered bases d, B, & respectively. Let T: V -> W and U: W -> Z be lin. transformations. Then [UT]^{*}_L = [U]^{*}_B[T]^{*}_L.

Corollary Let V be a fin. dim. v.s. with an ordered basis
$$p$$
.
Let T, U $\in \mathcal{L}(V)$.
Then $[UT]_{\mathcal{B}} = [U]_{\mathcal{B}} [T]_{\mathcal{B}}$.

Invertifility Det Let V, W be v.s.'s and T: V -> W linear. 1) A lin. transf. U: W -> V is the inverse of T it UT= Iv and TU = Iw. 2) T is invertible if it has an inverse.

Basic forts
1) If T is invertible, then its inverse is unique, and is denoted by
$$T^{-1}$$
.
2) T is invertible 2=> T is a bijection.
3) If T, U are invertible, then
 $\cdot (TU)^{-1} = U^{T}T^{-1}$
 $\cdot (T^{-1})^{-1} = T.$

Lemma Let T: V > W be lin. and invertible, and dim(V) < 00. Then dim(V) = dim(W). Dep A matrix A e Mnnn(F) is inreptible if there exist B & Mnnn(F) s.t. AB = BA = I. If such a B exists, the it is unique, called the inverse of A and denoted by A⁻¹.

 $\overline{}$

1	I hm 2.18 Let V, W be fin. dim. V.S. ? s with ordered bases 3 and 8, resp.
	Let T: V-> W be lin.
	Then T is invertifie => the matrix [T] is invertible.
	Furthermore, $[T^{-1}]_{\delta}^{\delta} = ([T]_{\beta}^{\delta})^{-1}$.
	Izonurphisms
	Der Two v.s.'s V and W are isomorphic if there exists an invertible lin. transf.
	T: V -> W. Such a T is called an isomorphism from V onto W.
	Thun 2.13 Two fin. dim. v.s.'s V and W are isomorphic => dim(V) = dim(W).
	и
	Corollary. Let V be a v.s. over F. Then V is isomorphic to F it and only if dim (V)=n.

Then the map
$$\phi: \mathcal{L}(V,W) \longrightarrow M_{m\times n}(F)$$
 defined by
 $p(T) = [T]_{\mathcal{B}}^{\infty}$ for all $T \in \mathcal{L}(V,W)$
is an isomorphism.

Corollary If dim(V)=n, dim(W)=m then dim(L(V,W))=dim(Mm+n(F))=mn.

Dual spaces

Definition Let V be a vector space over a field of scalars F (which is itself a vector space of dim I over F.) A linear transformation from V to F is called a linear functional on V.

 $E_{XI} \quad \text{Let } V \text{ be the } v_{S} v_{of} \text{ continuous real-valued functions on the interval } [0;2\pi]. Fix a function <math>g \in V.$ Then the function $h: V \rightarrow \mathbb{R}$ defined by $h(x) = \frac{1}{2\pi} \int x(t)g(t) dt \text{ for } x \in V \quad \left\{ \begin{array}{c} - \text{ Definite integral is one of the most important lin. functionals} \\ - \text{ Definite integral is one of the most important lin. functionals} \\ \text{is a lin. functional on } V. \end{array} \right\}$

Ex2 Let $V = M_{n\times n}(F)$, and define $f: V \rightarrow F$ by f(A) = tr(A), the trave of the matrix $A \in V$. (recall: $tr(A) = A_{11} + A_{22} + \dots + A_{nn}$). Then f is a lin. functional.

 $\begin{bmatrix} Ex 3 & Let V & be a finite dim. v.s., and let <math>B = \{x_1, \dots, x_n\}$ be an ordered basis for V. For each $i = 1, 2, \dots, n$ we define $f_i(x) = a_i$, where $[X]_B = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ is the coordinate vector of x relative to B. Then each f_i is $a_i = 1, 2, \dots, n$ we define $f_i(x) = a_i$. Then each f_i is the coordinate vector of x relative to B. Then each f_i is $a_i = 1, 2, \dots, n$ we it to be a finite function w.r.t. the basis B.

Dep For a v.s. V over F, we define the dual space of V to be the v.s. L(V,F), denoted by V^* . We define the double dual V^{**} of V to be the dual of V^* .

Thus V^* is the v.s. consisting of all lin. functionals on V. Remark If V is finite dimensional, then by Theorem 2.20 we have: $dim(V^*) = dim(L(V,F)) = dim(M_{dim(V) \times dim(F)}(F)) = dim(V) \cdot dim(F) = dim(V) \cdot I = dim(V).$ Hence, by Thum 2.13, V and V^{*} are isomorphic. (this can be false when V is infinite dimensional!) Then 2.24 Supp. that V is a fin. dim. v.s. over F with the ordered basis $B = \{x_1, ..., x_n\}$. Let f_i , $I \le i \le h$ (e the ith coordinate function w.r.t. B (as in Example 3 above). Let $B^* = \{f_i, ..., f_n\}$. Then B^* is an ordered basis for V^* , and for any $f \in V^*$ we have $f = \sum_{i=1}^{n} f(x_i)f_i$. Proof. Let $f \in V^*$ be arbitrary. Since dim $(V^*) = n$ by the remark above, we is a loss for V^* by $f = \sum_{i=1}^{n} f(x_i)f_i$ (as this means that B^* generates V^* , and is of size n, hence is a basis for V^* by the Replacement Theorem). Let $g = \sum_{i=1}^{n} f(x_i)f_i$. Then for $I \le j \le n$ we have: $g(x_j) = \left(\sum_{i=1}^{n} f(x_i)f_i\right)(x_j) = \sum_{i=1}^{n} f(x_i)f_i(x_j)$. Since by definition, $f_i(x_j) = \begin{cases} I & if i = j \\ 0 & if i \neq j \end{cases}$, we get $g(x_j) = f(x_j)$.

Hence t and g are two lin. transformations that agree on every vector in a basis, hence they are equal on the whole space (by Corollary to Thm 2.6).

Dep Using the notation of Thm 2.24, we call the ordered basis B*= {fi,...,fn} of V* that satisfies fi(x;)={0 if if i} the dual basis of p.

 $E \times 4 \quad \text{Let } \beta = \{(2,1), (3,1)\} \text{ be an ordered losis for } V = IR^2. \text{ Suppose that the dual fasts of } \beta \text{ is given by} \\ B^* = \{f_1, f_2\}. \text{ To determine a formula for } f_1, we know that by def. it much satisfy the equations:} \\ I = \{f_1(2,1) = f_1(2e_1+e_2) = 2f_1(e_1) + f_1(e_2), \\ o = f_1(3,1) = f_1(3e_1+e_2) = 3f_1(e_1) + f_1(e_2). \\ \text{Solving the equations, we obtain } f_1(e_1) = -1 \text{ and } f_1(e_2) = 3. \text{ Hence } f_1(x,y) = -x + 3y. \\ \text{Similarly, we get } f_2(x,y) = x - 2y. \end{aligned}$

Assume now that V, W are fin. dim. v.s. over F with ordered taxes is and S, respectively, $\dim(V) = m$, $\dim(W) = n$,

Question: Given a matrix A = ET], when is it possible to find a lin. transformation U represented by the matrix A^+ in some basis?

Of course, if m ≠ n then if is impossible for U to be a lim. transformation from V to W. Dual spaces help!
Then 2.25 Let V and W be fin. dim. v.s. over F with ordered Gases, B and & , resp.
For any lim. transformation T: V → W , the map
$$T^{\pm}: W^{\pm} → V^{\pm}$$
 defined by $V \xrightarrow{T} W$
T[±](g) = gT for all geW[±]
is a lim. transformation such that $[T^{\pm}]_{g^{\pm}}^{g^{\pm}} = ([T]_{g}^{\pi})^{\pm}$.
Proof.
I) For any geW[±], we defined $T^{\pm}(g) = gT$, i.e. the composition of linear maps $T: V → W$ and $g: W → F$.
Hence $T^{\pm}(g)$ is a linear map from $V → F$, so it is an element of V^{*} . Thus indeed T^{\pm} maps W^{*}
into V^{*} . Given any $g, h \in W^{*}$ and $a \in F$, we have that for any $x \in V$:
 $T^{+}(ag+h)(x) = aT^{+}(g) + T^{+}(h)$, so $T^{\pm}: W^{\pm} → V^{*}$ is a lim. transformation.
2) Let $J = aT^{+}(g) + T^{+}(h)$, so $T^{\pm}: W^{\pm} → V^{*}$ is a lim. transformation.
2) Let $J = aT^{+}(g) + T^{+}(h)$, so $T^{\pm}: W^{\pm} → V^{*}$ is a lim. transformation.
2) Let $A = [T]_{g}^{F} = (A;_{g})$.
To find the j^{th} excloses of p^{*} . By Thum 2.24 we have:
 $T^{*}(g) = g; T = \sum_{s=1}^{s}(g;T)(s) = g; (T_{s}) + K$.
So the row i, cohoming intry of the matrix $[T^{\pm}]_{g^{*}}^{g^{*}}$ is
 $S = f_{12} + v_{12} + v_{13} +$