$(115$ A Reminder Chapter $I + I$

Vector spares. Decinition. A vector space V over a field F is a set with two operations, addition and scalar multiplication, (so for any x,y in V and a & F, x+y and ax are in V) such that the following conditions hold. $(Y51)$ $X + Y = Y + X$ for all X, Y in V (commutativity) $(Vs2)$ $(x+y)+2 = x+(y+z)$ for all x,y,z in V (associativity) (VS3) There exists an element o in V such that $x + o = x$ for all $x \in V$. (identity) (VS4) For each x in V there is an element y in V such that $x+y=0$ (y is an inverse of x) (YSS) 1.x = X for aM x in V (where I is the multiplicative identity of F). (VSG) $a(bx) = (ab)x$ for all x in V and a, b in F distributive laws $(VS7)$ a $(x+y)$ = ax + ay for all a in F and x, y in V. (VSS) $(a+6)x = ax+6x$ for all a, b in F and x in V. Elements of V are called vectors. Elements of F are called scalars. Theorem 1.1 (cancellation law) Let V be a v.s. and let $x, y, z \in V$. I_{+} $x+z=y+z$, then $x=y$. Corollary 1) In any vector space V, there is a unique element 0 satisfying (153) - the <mark>zero vector of V</mark> 2) For any v.s. V and any x in V, there is a unique element y in V satisfying (Vs4). It is called the inverse of x , and denoted by $-x$. Theorem 1.2. Let V le avs over F. For all x in V and a in F we have: 1) $0 \cdot x = 0$ (Note: the 1st 0 is a scalar in F, the 2nd one is the zero vector in V). 2) $(-a)$ $x = -(ax) = a(-x)$ 3) $a \cdot 0 = 0$ (Note: this is the zero vector of V on foth sides) Subspaces. Definitime. Let V be a r.s. A subset W ∈ V is a <mark>subspace</mark> of V if W itself is a r.s. with respect to the addition and scalar multiplication defined on V. Theorem 1.3. Let V be a κs , and let $W \leq V$ be a subset of V. Then W is a subspace of V if and only if all of the following conditions hold. (a) $0 \in W$ (b) $x + y \in W$ for all $x, y \in W$ (W is closed under addition) (c) $c \times \in W$ for all $c \in F$ and $x \in W$ (W is closed under scalar multiplication). Theorem 1.4. Let V be a v.s. over F. If W_1 , W_n are subspaces of V, then the set $W = W_1 \cap W_2 \cap ... \cap W_n$ is also a subspare of V. Linear combinations Definition. Let V be a Ks., and let $S \leq V$ be a non-empty subset of V. 1)A vector v in V is a linear combination of S if one can write V = a_tu_t + a_zu_z + ... + a_nu_n
for some vectors u_{t j}...,un in S and some scalars a_{t j}..., an in F.

2) The span of S, deno4ed Span(S), is the subset of V consisting precisely of aM linear combinations of S. That is, Span $(5) = \{a_1u_1 + ... + a_nu_n : n \in \mathbb{N}\}$, $q_i \in F$, $u_i \in S\}$. For convenience, we define $Span(\phi) = \{o\}.$

Theorem 1.5. Let S be any subset of a v.s. V. Then: 1) Span(S) is a subspace of V. 2) Any subspace of V that contains S must also contain Span (s).

Definition. Let V be a v.s. and S a subset of V. We say that S generates (or spans) V if Span (s) = V.

Definition. A subset S of a v.s. V is linearly dependent if there exist a finite number of <u>distinct</u> vectors $u_1,...,u_n$ in S and scalars $a_1,...,a_n \in F$, with at least one $a_i \neq 0$, such that $a_1u_1 + \ldots + a_nu_n = 0$. We caM S linearly independent if it is not linearly dependent.

Theorem 1.6. Let V be a v.s. and S_1 SS_2 S_1 be two subsets of V. 1) If S, is lin dependent, then S_2 is also linearly dependent. 2) I_f S_2 is lin. indep, then S_i is also lin. indep.

Theorem 1.7. Let S be a lin. indep. subset of a vector space V. Let V be any rector in V not contained in S. Then $S\cup \{v\}$ is lin. dep. if and only if $v \in Span(S)$.

Bases and dimension.

Definition. A fasis for a v.s. V is a subset of V which is lin. indep. and generates V.

Theorem 1.8. A subset $\epsilon u_1,...,u_n$ g of a v.s. V is a fasis if and only if every vector $v\epsilon V$ can le written uniquely in the form $V = 9, U_1 + ... + 9n U_9$

where $a_i \in F$.

(so "uniquely" here means that there is only one possible choice of the scalars a.,.., an EF satisfying the equality)

Theorem 19. If a r.s. V is generated by a finite subset S, then some subset of S is a fasis for V. It _{Follow's} that every _Finitely generated v.s. has a basis.

Theorem 1.10 (Replacement theorem)

Let V be a u.s. generated by a set $G \subseteq V$ with $|G|=n$, and let L be a lin.indep. subset of V , $L\vdash m$ Then $m \le n$, and there exists $H \subseteq G$ with $|H| = n-m$ such that $L \vee H$ generates V.

Corollary 1. Let V be a finitely generated v.s. Then every fasis for V has the same number of elements.

Pe_tinition. A rs. V is finite-dimensional if it has a finite basis.

The (unique) number of vectors in a basis for V is called the dimension of V , denoted dim (V) . If there is no finite fasis, then V is infinite-dimensional.

Corollarg2. Let V be a r.s. of dimension n. Then:

The vector space of linear transpormations $L(V,W)$. Def. Let V, W te v.s. over F, and let T, U: V-> W le linear transformations. Then we define the functions $\frac{1}{1+u}$ and $\frac{1}{1-u}$, for every $a \in F$, by :
 $(T+u)$ (x) = $T(x) + u(x)$ for all $x \in V$. $(aT)(x) = a T(x)$ for all $x \in V$.

 $Thm27$

If T and U are linear, then T+U and a U are also linear.

Def We denote the set of all lin. transf.'s from V to W by L (V, W).

Then it is a v.s. over F, with the operations of addition and scalar multiplication described above.

When $W=V$, we write $\mathcal{L}(V)$ instead of $\mathcal{L}(V,V)$.

Matrix representation of a lin. transf.

Def Let V be a v.s. with dim(V) < 0. An ordered bosis for V is a basis for V with a specified order on its rectors.

Det Let
$$
B = \{v_1, \ldots, v_n\}
$$
 be an ordered basis for V .

\nThen any vector $x \in V$ can be written as

\n $X \geq a$, $v_1 + \ldots + a_n v_n$ for some unique scalars $a_1, \ldots, a_n \in F$.

\nWe define the *toordinate vector* of x relative to B by $\{x\}$.

\n $[x]_B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in F^n$.

Let V, W be vs. with ordered bases
$$
B = \{v_1, ..., v_m\}
$$
 and $S = \{w_1, ..., w_m\}$, respectively.
\nLet T: V \rightarrow W be a *lin* transformation.
\nThen the matrix representation of T in the ordered bases B and S is defined as
\n $W = \text{median}(r)$ for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for $\frac{1}{r}$ for all r for $\frac{1}{r}$ for all r

Composition of lin. transf's and matrix multiplication,
Day Let V, W, Z be v.s.'s over F. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be lin. transf Their composition is the function it from V to \pm , defined by
(UT)(x) = U(T(x)) for aM x eV. $(UT)(x) = U(T(x))$ for all $x \in V$. Thm 2.9 I_f T and U are linear, then UT is also linear.

Der Given matrices A
$$
\epsilon
$$
 M_{maxn} (F) and $\beta \epsilon$ M_{maxn} (F), we define the product
\n $AB \epsilon M_{\text{maxp}}(F)$ to be the matrix with the entries

\n
$$
(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}
$$
\n
$$
for \quad k = 1 \leq m, \quad l = j \leq f.
$$

Thm 2.11 Let V , W , \geq te finalim. v.s.'s with ordered fases λ , β , δ respectively. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be $\lim_{n \to \infty}$ transformations. Then $[UT]_{\mu}^{\gamma} = [U]_{\beta}^{\delta}[T]_{\mu}^{\beta}$.

Corohary Let V be a fin. dim. v.s. with an ordered basis p.
Let
$$
T_y u \in L(V)
$$
.
Then $[uT]_p = [u]_p [T]_p$.

Thm 2.14 Let V, W be fin. dim. v.s.'s with orolved bases
$$
p
$$
 and r , resp.
Let T: V \rightarrow W be a lin. from r and r each vector u eV we have:

$$
[T(u)]_r = [T]^{\delta}_{p}
$$
 [u] p .
(so, we calculate the coordinates q the vector T(u) from the coordinates q the vector u).

$$
l_{\text{eq}}
$$
 To every matrix A $\in M_{\text{max}}(F)$, we associate a linear transformation $L_{\text{p}}:F^{\text{max}} \rightarrow F^{\text{max}}$
defined by
 $L_{\text{p}}(x) = Ax$ for every (column) vector xeF^{max} .
We call L_{p} the left-unil triglicating transformation

 $Invert(*i*)$ Def Let V, W be vs.'s and $T, V \Rightarrow W$ linear 1)A tin. transf $u:w\rightarrow v$ is the inverse of T if $U = U + \frac{1}{2}U +$ 2) T is <mark>invertible</mark> if it has an inverse.

Basic facts its inverse is <u>unique</u>, and is denoted by 1
a bijection.
those 2) T is invertible \geq T is a bijection.
3) If T, U are invertible, then
- (TU)⁻¹ = U^TT⁻¹ $\frac{1}{2}$ (T^{-1}) $\frac{1}{2}$ = T.

Lemma Let $T: V \rightarrow W$ be lin and invertible, and dim $(V) \nleq \infty$. Then dim (V) = dim (W) . β eg A matrix A e M_{n×n} (F) is invertible if there exist $B \in M_{n \times n}$ (F) s.t. AB = BA = I If such a B exists, the it is <u>unique,</u> called the inverse of A and denoted by A'

Dual spaces

 β efinition). Let V be a vectorspace over a field op scalars. F. (which is itself a vector space of dim 1 over F.) A linear transformation from V to F is called a linear functional on V .

 $Ex1$) Let V be the x s of continuous read-valued functions on the inferval $[0, 2\pi]$. Fix a function $g \in V$. Then the function $h:\mathbb{V}\rightarrow\mathbb{R}$ defined by $h(r) = \frac{1}{2\pi} \int_{0}^{4} x(t) g(t) dt$ for $x \in V$ - Definite integral is one of the most important lin. functionals I is a lin. functional on V.

Ex2 Let V = M_{nxn} (F), and define $f: V \rightarrow F$ by $f(A) = tr(A)$, the trace of the matrix $A \in V$. (recall: $tr(A) = A_n + A_{22} + ... + A_{nn}$). Then \leftarrow is a lin. functional.

 $\sqrt{2 \times 3}$ Let V be a finite dim. v.s., and let β = {x,,.., x,,} be an ordered fosis for V. For each i=1,2,...n we α , is the coordinate vector of x relative to p . Then each f_i is define $f_i(x) = a_i$, where $[x]_{\beta}$ > $-$ q₂ a lin. functional on V carled the it's coordinate function w.r.t. the basis β . an.

Def For a v.s. V over F, we objine the dual space of V to be the v.s. L (V,F), denoted by V^* . We define the double dual V^{**} of V to be the dual of V^* .

Thus V* is the v.s. consisting of all lin. functionals on V. Remark T_f V is finik dimensional, then by Theorem 2.20 we have:
dim (V^{*}) = dim (L(V,F)) = dim (M_{dim(V)}xdim(F)) = dim(V) dim(F) = dim (V) 1 = <mark>dim (V).</mark>
Hence, by Thm 2.13, <mark>V and V ^{*} are isomorphic</mark>. (this can be Thm 2.24 Supp. that V is a fin. dim. v.s. over F with the ordered bosis β = {x,,.., xn}. Let fi, l≤ish Le the ith coordinate function w.r.t. B (as in Example 3 above). Let $\beta^* = \{f_1, \ldots, f_n\}$.

Then β^N is an ordered losts for V^* , and for any $f \in V^*$ we have $f = \sum_{r=1}^{n} f(x_r) f_1$.
Proof, Let $f \in V^*$ be arbifrary. Since $dim(V^*) = n$ by the remark above, we only need to show that
 $f = \sum_{r=1}^{n} f(r_i) f_i$ (as this the Replacement Theorem). Let $j = \sum_{i=1}^{n} f(x_i) f_i$. Then for $1 \leq j \leq n$ we have: $g(x_j) = \left(\sum_{i=1}^{n} f(x_i) f_i\right) (x_j) = \sum_{i=1}^{n} f(x_i) f_i(x_j)$.
Since by definition, $f_i(x_j) = \begin{cases} 1 & \text{if } i \neq j \\ 0 & \text{if } j \neq j \end{cases}$, we get $g(x_j) = f(x_j)$.

Hence 4 and g are two lin. transpormations that agree on every vector in a fasis, hence they are equal on the whole space (by corollary to Thm 2.6).

 $\mathcal{H}_i(x_j) = \left\{\begin{matrix} i & i & i \\ 0 & i & i & j \end{matrix}\right\}$ (Def M sing the notation of Thm 2.24, we call the ordered fosis p^* = {fi,...,fn} of V^* that sutisfies the dual basis of B.

 $\{x \vee y \text{ } Let \text{ } \beta = \{(2,1), (3,1)\}$ be an ordered fosis for $V = IR^2$. Suppose that the dual fasis of β is given by β^* = { f_1, f_2 }. To defermine a formula for f_1 , we know that by def. if mnst satisfy the equations: $1 = f_1(z_1) = f_1(z_1 + e_2) = 2f_1(e_1) + f_1(e_2)$, $0 = f_1(s, t) = f_1(3e, t e_2) = 3f_1(e_1) + f_1(e_2).$ Solving the equations, we obtain $f_1(e_1) = 1$ and $f_1(e_2) = 3$. Hence $f_1(x,y) = -x + 3y$.

Similarly, we get $f_*(x,y) = x - 2y$.

Assume now that V,W are fination. $v.s.$ over F with ordered forces p and δ , respectively, $dim(V)$ =m, lim(V)=m Recall (Section 2.4): there exists a one-to-one correspondence between lin transformations $\tau:V{\rightarrow}V$ and m×n matrices over F given by $T \leftrightarrow \overline{LTJ_{\beta}^{\delta}}$.

Question: Given a matrix $A = \mathcal{LTJ}^s_\beta$, when is it possible to find a lin. transformation U represented by the matrix A^t in some basis?

0.4 turns a, if
$$
m \neq n
$$
 then if m is impossible, for M to be a \lim . transformation from V to W . \lim 2.25 Let V and W be \lim . \lim 2.25 Let V and W be \lim . \lim 2.25 Let V and W be \lim . \lim 2.25 \lim 2.26 Let V and W be \lim . \lim 2.27 \lim 2.37 \lim 2.48 \lim 2.49 \lim 2.5 \lim 2.6 \lim