Ex 6 Let T be the lin. op. from $E x 3$, and let $W=S_{\text {pan }}\left(\left\{e_{1}, e_{2}\right\}\right)$, the T-cyclic subspace generated by e_{1}. we compute the char poly $f(t)$ of T_{W} in two ways.
a) Using Tho 5.22.

By Ex 3 we have $\operatorname{dim}(W)=2$, and $T^{2}\left(e_{1}\right)=-e_{1}$. So

$$
1 e_{1}+0 . T\left(e_{1}\right)+T^{2}\left(e_{1}\right)=0
$$

Hence by Thu s.22(b), $f(t)=(-1)^{2}\left(1+0 t+t^{2}\right)=t^{2}+1$.
b) By a direct calculation:

Let $\beta=\left\{e_{1}, e_{2}\right\}$ - an ord. Pas is for W.
Since $T\left(e_{1}\right)=e_{2}$ and $T\left(e_{2}\right)=-e_{1}$, we have $\left[T_{w}\right]_{\beta}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, hence

$$
f(t)=\operatorname{det}\left(\begin{array}{cc}
-t & -1 \\
1 & -t
\end{array}\right)=t^{2}+1
$$

The Cayley-Mamilton Theorem
Def Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ be a polynomial with coefficients from a field F. Let T be a lin.op. on a r.s. V over F. We define

$$
f(T)=a_{0} I_{V}+a_{1} T+\ldots+a_{n} T^{n}
$$

where $I_{V} \in L(V)$ is the identity lin. op., and $T^{n} \in L(V)$ is the n-fold composition of T, ie. $T^{n}(x)=\underbrace{T(T(\ldots T(x)) \ldots)}_{n \text { times }}$ for all $x \in V$.

Rem Similarly, if $A \in M_{n \times n}(F)$, we define $f(A)=a_{0} I_{n}+a_{1} A+\ldots+a_{n} A^{n}$.
Thu $E .3$ Let $f(x) \in P(F)$ and $T \in \mathcal{L}(V)$ for V a v.s. over F. Then:
a) $f(T) \in L(V)$,
b) If β is a finite ordered basis for V and $A=[T]_{\beta}$, then $[f(T)]_{\beta}=f(A)$.

Proof
a) Follow as the set of linear operators on $L(V)$ is closed under composition, addition and scalar nultiplic action.
b) By the basic properties of matrix representation we have:

$$
\begin{aligned}
& {[f(T)]_{\beta}=\left[a_{0} I_{v}+a_{1} T+\ldots+a_{n} T^{n}\right]_{\beta}=a_{0}\left[I_{r}\right]_{\beta}+a_{1}[T]_{\beta}+\ldots+a_{n}\left[T^{n}\right]_{\beta}=a_{1} I_{n}+a_{1}[T]_{\beta}+\ldots+a_{n}[T]_{\beta}^{n}=} \\
& =a_{1} I_{n}+a_{1} A+\ldots+a_{n} A^{n}=f(A) .
\end{aligned}
$$

In view of The 5.22, cyclic spores can be used to prove the ra Moving well -known res, ult:
Thu 5.23 (Cayley-Hamilton) Let $T \in L(V), V$ a fin. dim. r.s. over F.
Let $f(t)$ be the char. poly. of T. Then $f(T)=T_{0}$, the zero-transformation (i.e. $T_{0}(x)=0 \forall+t V$). (That is, T satisfies its characteristic equation.)

Proof. We show that $f(T)(v)=0$ for all $v \in V$.
This is obvious for $v=0$ because $f(T)$ is linear by Tho $E, 3(a)$. So suppose $v \neq 0$.
Let W be the T-cyclic subspace of V generated by v, and let $k=\operatorname{dim}(W)$.
By $\operatorname{Thm} 5.22(a)$, there exist $a_{0}, a_{11} \ldots, a_{k-1}$ s.-1.

$$
a_{0} v+a_{1} T(v)+\cdots+a_{k-1} T^{k-1}(v)+T^{k}(v)=0 .
$$

Then Thu $5.22(b)$ implies that the char. poly. of T_{W} is

$$
g(t)=(-1)^{k}\left(a_{0}+a_{1} t+\ldots+a_{k-1} t^{k-1}+t^{k}\right)
$$

Combining these two equations we get
$g(T)(v)=(-1)^{k}\left(a_{0} I+a_{1} T+\ldots+a_{k-1} T^{k-1}+T^{k}\right)(v)=(-1)^{k}(\overbrace{a_{0} v+a_{1} T(v)+\ldots+a_{k-1} T^{k-1}(v)+T(v)}^{=0}=0$.

By Thu 5.21, $g(t)$ divides $f(t)$. Hence there exists a polynomial $g(t)$ s.t.

$$
\text { So } f(t)=q(T)(v)=(g(T) \cdot g(T))(v)=q(t)(\underbrace{(g(T)(v)}_{\ddot{0} \text { by above }})=q(T)(0)=0
$$

"o by above \uparrow as $g(T): V \rightarrow V$ is linear.
(Ex 7 Let $T \in L\left(\mathbb{R}^{2}\right)$ byined by $T(a, b)=(a+2 b,-2 a+b)$, let $\beta=\left\{e_{1}, e_{2}\right\}$. Then:
$A=[T]_{\beta_{B}}=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$. The char. poly. of T is then $f(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\begin{array}{cc}1-t & 2 \\ -2 & 1-t\end{array}\right)=t^{2}-2 t+5$.
We have $f(T)=T^{2}-2 T+5 I_{v}$.
By Than $E .3:[f(T)]_{\beta}=f(A)=A^{2}-2 A+5 I_{n}=\left(\begin{array}{cc}-3 & 4 \\ -4 & -3\end{array}\right)+\left(\begin{array}{cc}-2 & -4 \\ 4 & -2\end{array}\right)+\left(\begin{array}{cc}5 & 0 \\ 0 & 5\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right) . S_{0}\left(-(T)=T_{0}\right.$.

In general, using Thu 5.23 and Tho E. 3 we have:
CoraMary (Cayley-Hamilton for matrices) Let $A \in M_{n \times n}(F)$, led $f(t)$ le its char. poly. Then $f(A)=0$, the $n \times n$ zero matrix.
Proof.
Let $A \in M_{n \times n}(F)$ be given, consider $L_{A} \in L\left(F^{n}\right)$, the lin. operator on F^{n} satisfying $\left[L_{A}\right]_{\beta}=A$, where β is the standard basis for F^{n}.
Recall that the char. poly. of L_{A} is by def. the char. poly. of A. Then

$$
\begin{aligned}
& f(A)=\left[f\left(L_{A}\right)\right]_{\beta}=\left[T_{0}\right]_{\beta}=0 \\
& \text { Thu } E .3 \quad \text { Thu } 5.23 \text { one zero-promst. } \\
& \text { on } F^{n}
\end{aligned}
$$

Direct sums of vector spaces
Let $T \in L(V)$. There is a way of decomposing V into simpler subspaces that offers insight into the behavior of T. In the case w hen T is diagonalizable, the simpler subspmes are its eigenspares.
Dy Let $W_{1}, W_{2}, \ldots, W_{*} k$ subspaces of a r.s. V. The sum of these subspaces is the set of vectors

$$
\left\{v_{1}+v_{2}+\ldots+v_{k}: v_{i} \in W_{i} \text { for } 1 \leq i \leq k\right\}
$$

which we denote by $W_{1}+W_{2}+\ldots+W_{k}$ or $\sum_{i=1}^{k} W_{i}$. It is a subspace of V (Exercise!).
Ex Let $V=\mathbb{R}^{3}, W_{1}$ - the $x y$-plane, W_{2} the $y z$-plane. Then $\mathbb{R}^{3}=W_{1}+W_{2}$, because for any vector $(a, b, c) \in \mathbb{R}^{3}$ we have

$$
\begin{gathered}
(a, b, c)=(a, 0,0)+(0, b, c) \\
\in W_{1} \in W_{2} .
\end{gathered}
$$

But the presentation of (a, b, c) as a sum of vectors in W_{1} and W_{2} is not unique!
For example, $(a, b, c)=(a, b, 0)+(0,0, c)$ is another presentation.

To fix this, we introduce a condition that assures unique presentation.
Dep Let W_{1}, \ldots, W_{k} be subspaces of V.
We call V the direct sum of the subspaces W_{1}, \ldots, W_{k} and write $V=W, \oplus \ldots \oplus W_{k}$ it $V=\sum_{i=1}^{k} W_{i}$ and $W_{j} \cap \sum_{i \neq j} W_{i}=\{0\}$ for each $j, 1 \leq j \leq k$.

Ex let $V=\mathbb{R}^{4}, W_{1}=\{(a, b, 0,0): a, b \in \mathbb{R}\}, W_{2}=\{(0,0, c, 0): c \in \mathbb{R}\}, W_{3}=\{(0,0,0, d): d \in \mathbb{R}\}$. For any $(a, b, c, d) \in V$ we have: $(a, b, c, d)=(a, b, 0,0)+(0,0, c, 0)+(0,0,0, d) \in w_{1}+w_{2}+w_{3}$, so $V=\sum_{i=1}^{3} w_{i}$.
We also have: $W_{1} \cap\left(W_{2}+W_{3}\right)=W_{2} \cap\left(W_{1}+W_{3}\right)=W_{3} \cap\left(W_{1}+W_{2}\right)=\{0\}$.
Thus $V=W_{1} \oplus W_{2} \oplus W_{3}$.

Thu 5.10 Let W_{1}, \ldots, W_{k} be subspaces of a fin. dim. v.s. V. The following are equivalent.
a) $V=W_{1} \oplus \ldots \oplus W_{k}$.
b) $V=\sum_{i=1}^{k} W_{i}$ and for any v_{1}, \ldots, v_{k} with $v_{i} \in W_{i}, 1 \leqslant i \leq k$, it $v_{1}+\ldots+v_{k}=0$, then $v_{i}=0$ for all i.
c) Each vector $v \in V$ can be uniquely written as $v=v_{1}+\ldots+v_{k}$ for some $v_{i} \in W_{i}$.
d) If γ_{i} is an ordered basis for W_{i}, then $\gamma_{1} \cup \ldots \cup \gamma_{k}$ is an ordered basis for V.
e) For each $i=1, \ldots, k$ there exists an ordered basis γ_{i} for W_{i} s.t.,,$\cup \ldots \cup \gamma_{k}$ is an ordered lass for V.

Proof.
$(a) \Rightarrow(b)$ Clearly $V=\sum_{i=1} W_{i}$. Supp. That $v_{i} \in W_{i}$ and $v_{1}+\ldots+v_{k}=0$. Then for ty (a) any j we have $-v_{j}=\sum_{i \neq j} v_{i} \in \sum_{i \neq j} W_{i}$. But $-v_{j} \in W_{j}$, hence $-v_{j} \in W_{j} \cap \sum_{i \neq j} W_{i} \stackrel{=}{=}\{0\}$. So $v_{j}=0$, hence (b) holds.
$(b) \Rightarrow(c)$ Let $v \in V$. $B_{y}(b) \exists v_{1}, \ldots, v_{k}$ s.t. $v_{i} \in W_{i}$ and $v=v_{1}+\ldots+v_{k}$. We must show that this representation is unique.
supp. also that $v=w_{1}+\ldots+w_{k}$, with $w_{i} \in W_{i}$ for all i. Then

$$
\left(v_{1}-w_{1}\right)+\left(v_{2}-w_{2}\right)+\ldots+\left(v_{k}-w_{k}\right)=0 .
$$

But $\left(v_{i}-w_{i}\right) \in w_{i}$ for all i, therefore $v_{i}-w_{i}=0$ for $a l l i$ by (b), thus $v_{i}=w_{i}$ for all $;$.
$(c) \Rightarrow(d)$ For each i, let γ_{i} be an ordered basis for W_{i}. Since $V=\sum_{i=1}^{7} w_{i}$ by (c), it follows that $\gamma_{1} v \ldots v \gamma_{k}$ generates V. To show that this set is lin.indep, consider vectors $v_{i j} \in \gamma_{i}\left(j=1, \ldots, m_{i}, i=1, \cdots, k\right)_{m_{i}}$ and scalars $a_{i j}$ such that $\sum_{i, j} a_{i j} v_{i j}=0$. For each i, set $w_{i}=\sum_{j=1}^{m_{i}} a_{i j} v_{i j}$. Then for each $i, w_{i} \in S_{p a n}\left(\gamma_{i}\right)=W_{i}$ and $w_{1}+\ldots+w_{k}=\sum_{i, j} a_{i j} v_{i j}=0$.

Since $0 \in W_{i}$ for $r_{m_{i}}$ each i and $0+0+\ldots+0=w_{1}+w_{2}+\ldots+w_{k}$, (c) implies that $w_{i}=0 \forall i$. Thus $0=w_{i}=\sum_{j=1}^{m_{i}} a_{i j} v_{i j}$ for each i.
But each γ_{i} is lin. indep., hence $a_{i j}=0$ for all i and j. So $\gamma_{1} u \ldots v \gamma_{k}$ is lin.indep., so it is a basis for V.

$$
(d) \Rightarrow(e) \text { Obvious. }
$$

(e) \Rightarrow (a) For each i, let γ_{i} be an ordered basis for W_{i} s.t. $\gamma_{k} v \ldots v \gamma_{k}$ is an ord. fasis for V. Then $V=\operatorname{Span}\left(\gamma_{1} v \ldots v \gamma_{k}\right)=\operatorname{span}\left(\gamma_{1}\right)+\ldots+\operatorname{Span}\left(\gamma_{k}\right)=\sum_{i=1}^{k} W_{i}$.
Fix $j(1 \leq j \leq k)$ and supp. that, for some non-zero vector $v \in V$, $v \in W_{j} \cap \sum_{i \neq j} w_{i}$. Then

$$
v \in W_{j}=\operatorname{Span}\left(\gamma_{j}\right) \text { and } v \in \sum_{i \neq j} W_{i}=S_{p a n}\left(\bigcup_{i \neq j} \gamma_{i}\right) \text {. }
$$

Hence r is a non-trivial lin comb. of fath γ_{j} and $\left(\bigcup_{i \neq j} \gamma_{i}\right)$, so v can be expressed as a lin. comb. of $\gamma_{1} \cup \ldots \cup \gamma_{k}$ in more than one way, contradicting the property of a basis. So $w_{j} \cap \sum_{i \neq j} w_{i}=\{0\}$, proving (a).

This Mows us to characterize diagonalizability in terms of direct sums.
Tm n S. Il Given a v.s. V, $\operatorname{dim}(V)<\infty, T \in L(V)$ is diagz. ff V is the direct sum of the eigenspares of T.
Proof.
Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T.
suppose that T is diag z, and let γ_{i} be an ordered basis for $E_{\lambda_{i}}$.
Recall Thy sig from 115A:

- If T is diag, then $\gamma_{1}, \ldots \vee \gamma_{k}$ is an ordered basis for V consisting of eigenvectors of T. Hence V is a direct sum of the $E_{\lambda_{i}}$'s by Thu s.10 (e).
Conversely, supp. that V is a direct sum of the eigenspaces of T.
For each i, choose an ord. basis γ_{i} of $E_{\lambda i}$.
By The $5.10(d), \quad \gamma, v \ldots v \gamma_{k}$ is a basis for V.
Since this basis consists of eigenvectors of V, we conclude that T is diagz,
This gives a particular way of decomposing V as a direct sum of T-invariant subspaces when T is diagz. What can be said for general T ?
$T \ln S .24$ Let $T \in \mathcal{L}(V), \operatorname{dim}(V)<\infty$ and supp. $V=W_{1} \oplus \ldots \oplus W_{k}$, where W_{i} is a T-inv. subspace of V for each $;(1 \leqslant i \leqslant k)$.
Let $t_{i}(t)$ be the char. poly. of $T_{w_{i}}$.
Then $t_{1}(t) \cdots f_{k}(t)$ is the char. poly. of T.
Proof. By induction on k.
Base step: supp. $k=2$.
LAT β_{i} be an ord basis for W_{i}, and $\beta=\beta_{1} \cup \beta_{2}$.
Then β is an ord. basis for V by The $5 \cdot 10(d)$.
Let $A=[T]_{\beta}, B_{i}=\left[T_{w_{i}}\right]_{\beta_{i}}$ for $i=1,2$.
Let $\beta_{1}=\left\{v_{1}, \ldots, v_{m}\right\}, \beta_{2}=\left\{v_{m+1}, \ldots, v_{n}\right\}, \beta=\left\{v_{1}, \cdots, v_{n}\right\}$.

We have $[T]_{\beta}^{\text {deft }}=\left(\begin{array}{ccc}1 & 1 \\ {[T(v)]_{\beta}} & \cdots & {\left[\begin{array}{c}T\left(v_{1}\right) \\ 1\end{array}\right.} \\ \mid & & \mid\end{array}\right)$.
Let $x \in V$ be any vector, say $x=a_{1} v_{1}+\ldots+a_{n} v_{n}$ for $a_{i} \in F$. Let $x_{1}:=\sum_{i=1}^{m} a_{i} v_{i} \in W_{1}, x_{2}=\sum_{i=m+1}^{n} a_{i} v_{i} \in W_{2}$.
$I_{t} x \in W_{1}$, then also $x_{2}=\left(x-x_{1}\right) \in W_{1}$, so $x_{2} \in W_{1} \cap W_{2}=\{0\}$, so $x_{2}=0$, then $a_{i}=0$ for all $m+1 \leq i \leq n$. $I_{t} x \in W_{2}$, then also $x_{1}=\left(x-x_{2}\right) \in W_{2}$, so $x_{1} \in W_{1} \cap W_{2}$, so $x_{1}=0$, then $a_{i}=0$ for all $1 \leq i \leq m$.

As $v_{i} \in W_{1}$ for $1 \leq i \leq m$ and W_{1} is T-inv, we hove $T\left(v_{i}\right) \in W_{1}$.
Similarly, $T\left(v_{i}\right) \in W_{2}$ for all $m+1 \leq i \leq n$.
Hence for the coordinate rectors we have.
For $\left.1 \leq i \leq m: \quad\left[T\left(v_{i}\right)\right]_{\beta}=\left(\begin{array}{c}1 \\ {\left[T_{w_{w_{1}}}\left(v_{i}\right)\right]_{\beta_{1}}} \\ 0 \\ \vdots\end{array}\right)\right\}_{n m} ;$ for $\left.m+1 \leq i \leq n ; \quad\left[T\left(v_{i}\right)\right]_{\beta}=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 1 \\ {\left[T_{\nu_{2}}\left(v_{i}\right)\right]_{\beta_{2}}}\end{array}\right)\right\}_{n-m}$. Hence $[T]_{\beta}=\left(\begin{array}{cc}B_{1} & 0 \\ 0^{\prime} & B_{2}\end{array}\right)$, where $0,0^{\prime}$ are zero-matrices of appropriate size.

Then for the char. poly of T we have:

$$
f(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(B_{1}-t I\right) \cdot \operatorname{det}\left(B_{2}-t I\right)=f_{1}(t) \cdot f_{2}(t) \text {. }
$$

matrix
Inductive step. Assume the theorem is valid for $k-1 \geq 2$, and we prove it for k.
Suppose $V=W_{1} \oplus \ldots \oplus W_{k}$.
Let $W=W_{1}+\ldots+W_{k-1}$. Cis linear
Then W is a $T_{-i n k}$ subspace of $V\left(i_{k} x \in W_{1}+\ldots+W_{k-1}\right.$, say $x=x_{1}+\ldots+x_{k-1}$ for $x_{i} \in W_{i}$, then $T(x) \stackrel{k}{=} T\left(x_{1}\right)+\ldots$ $\ldots+T\left(x_{k-1}\right)$, and $T\left(x_{i}\right) \in W_{i}$ as w_{i} is $T-i n v$, so $T(x) \in W_{1}+\ldots+W_{k-1}$).
And $V=W \oplus W_{k} \quad\left(\right.$ dearly $V=W+W_{k} ;$ if $x \in W \cap W_{k}$, then $x \in \sum_{j \neq k} W_{j} \cap W_{k}=\{0\}$ as $\left.V=W_{1} \oplus \ldots \oplus W_{k}\right)$.
So by the case for $k=2$, we get $f(t)=g(t) \cdot f_{k}(t)$, where $g(t)$ is the char. ply. of T_{W}.
Clearly $W=W_{1} \oplus \oplus W_{k-1}$, therefore $g(t)=t_{1}(t) \ldots \cdot f_{k-1}(t)$ by the induction hypothesis. So $f(t)=g(t) \cdot f_{k}(t)=f_{1}(t) \cdots f_{k}(t)$.

Cor sup. That $T \in L(V)$ is diagz, $\operatorname{dim}(V)<\infty$, and $\lambda_{1}, \ldots, \lambda_{d}$ are its distinct eigenvalues.
By Tho $5.11, V$ is a direct sum of the eigen spaces of T.
Since each eigenspare is T-inr., we can apply Thu 5.24.
For each λ_{i}, consider $T_{E_{\lambda_{i}}}$. Let γ_{i} be an ord. lass for $E_{\lambda_{i}}$. Let $\operatorname{dim}\left(E_{\lambda_{i}}\right)=m_{i}$, write $\gamma_{i}=\left\{V_{1}, \ldots, v_{m}\right\}$. Then for each $1 \leq j \leq m_{i}$ we have $T_{E_{\lambda_{i}}}\left(v_{j}\right)=\lambda_{i} \cdot v_{j}$, so

$$
\left[T_{E_{\lambda_{i}}}\left(v_{j}\right)\right]_{\gamma_{i}}=\left(\begin{array}{c}
0 \\
0 \\
\lambda_{i} \\
0 \\
0 \\
0
\end{array}\right) \text { the } j^{\text {th }} \text { position, so }\left[T_{E_{\lambda_{i}}}\right]_{\gamma_{i}}=\underbrace{\left(\begin{array}{ccc}
\lambda_{i} & & \\
\lambda_{i} & 0 \\
0 & \ddots & \\
0 & \lambda_{i}
\end{array}\right)}_{m_{i}} \text { d et }\left(\left[T_{\left.E_{\lambda_{i}}\right]_{\gamma_{i}}-t I}^{m_{i}} \text {, so the char. poly of } T_{E_{\lambda_{i}}} \text { is }=\left(\lambda_{i}-t\right)^{m_{i}}\right.\right. \text {. }
$$

So by Than S. II we get $t(t)=\left(\lambda_{1}-t\right)^{m_{1}}\left(\lambda_{2}-t\right)^{m_{2}} \ldots \ldots\left(\lambda_{k}-t\right)^{m_{k}}$.
(So the multiplicity of each eigenval. is equal to the dimension of the correspmading eigenspare, as expected).

Next we define an operation on matrices which corresponds to direct sum of subspaces.
(Def Let $B_{1} \in M_{m \times m}(F), B_{2} \in M_{n \times n}(F)$. We define the direct sum of B_{1} and B_{2}, denoted $B_{1} \oplus B_{2}$, as the $(m+n) \times(m+n)$-matrix A st.

$$
A_{i j}= \begin{cases}\left(B_{1}\right)_{i j} & \text { for } 1 \leq i, j \leq m, \\ \left(B_{2}\right)_{(i-m),(j-m)} & \text { for } m+1 \leq i, j \leq n+m, \\ 0 & \text { otherwise. }\end{cases}
$$

It B_{1}, \ldots, B_{A} are square matrices over F, possibly of different sizes, we define the direct sum of B_{1}, \ldots, B_{k} recursively by
$B_{1} \oplus \ldots \oplus B_{k}=\left(B, \oplus \ldots \oplus B_{k-1}\right) \oplus B_{k}$.
If $A=B_{1} \oplus \ldots \oplus B_{k}$, then it is of the form $\quad A=\left(\begin{array}{c|c|c|c}B_{1} & 0 & \cdots & 0 \\ \hline 0 & B_{2} & \cdots & 0 \\ \hline \vdots & \vdots & \ddots & \vdots \\ \hline A & 0 & \cdots & B_{k}\end{array}\right)$.
Ex let $B_{1}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right), B_{2}=(3), B_{3}=\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1\end{array}\right)$. Then $B_{1} \oplus B_{2} \oplus B_{3}=$

$$
\left(\begin{array}{llllll}
{\left[\begin{array}{llll}
1 & 2 & 0 & 0
\end{array}\right.} & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Thu 5.25 let $T \in L(V)$ be a lin. op, $\operatorname{dim}(V)<0$. Let W_{1}, \ldots, W_{k} be T-inv. subspaces of V s.t. $V=W_{1} \oplus \ldots \oplus W_{k}$. For each i, let $\beta_{i} k$ an ordered basis for W_{i}, and let $\beta=\beta_{1} \cup \ldots v \beta_{k}$. Let $A=[T]_{\beta}$ and $B_{i}=\left[T_{w_{i}}\right]_{\beta_{i}}$, for $i=1, \ldots, k$. Then

$$
A=B_{1} \oplus \ldots \oplus B_{k} .
$$

Proof Homework 3.

