Ex6 Lat T be the lin. op. from Ex3, and let $W = Span(\xi e_1, \xi_2)$, the T-cyclic subspace generated by e_1 . We compute the chor. poly f(t) of T_W in two ways. a) Using Thm 5.22. By Ex3 we have $\dim(W) = 2$, and $T^2(e_1) = -e_1$. So $Ie_1 + 0 \cdot T(e_1) + T^2(e_1) = 0$. Hence by Thm 5.22(B), $f(t) = (-1)^2(1 + 0t + t^2) = t^2 + 1$.

b) B₃ a direct calculation: let $p = \{e_1, e_2\}$ - an ord. tasis for W. Since $T(e_1) = e_2$ and $T(e_2) = -e_1$, we have $[T_W]_p = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, hence $f(t) = det(-t - 1) = t^2 + 1$.

The Cayley-Hamilton Theorem Def Let $f(x) = a_0 + q_1 x + ... + a_n x^n$ be a polynomial with coefficients from a field F. Let T be q lim.op. on a v.s. V over F. We define $f(T) = a_0 I_V + a_1 T + ... + a_n T^n$, where $I_V \in \mathcal{L}(V)$ is the identity lin.op., and $T^n \in \mathcal{L}(V)$ is the n-fold composition of T, i.e. $T^n(x) = T(T(....T(x))...)$ for all $x \in V$.

Rem Similarly, if A & Mnn (F), we define ((A) = no In + a, A + ... + an A".

Then E.3 Let f(x) ∈ P(F) and T ∈ L(V) for V a ks over F. Then:
a) f(T) ∈ L(V),
b) If B is a finite ordered tosis for V and A = [T]_B, then [f(T)]_B = f(A).
Proof

a) Follow as the set of linear operators on L(V) is closed under composition, addition and scalar num I tiplic ation.
b) By the basic properties of matrix representation we have:
[f(T)]_B = [ao I_V + a, T + ... + a, Tⁿ]_B = ao [I_V]_B + a, [T]_B + ... + an [Tⁿ]_B = a, I_h + a, [T]_B + ... + an [T]ⁿ_B =

In view of Thun 5.22, getic spare, can be used to prove the following well-known result: [Thun 5.23 (Caybey-Hamilton) Let $T \in L(V)$, V a fin.dim.v.s. over F. Let f(t) be the chor. poly. of T. Then $f(T) = T_0$, the zero-transformation (i.e. $T_0(w) = 0$ to $V + \epsilon V$). (That is, T satisfies its characteristic equation.)

Proof. We show that f(T)(v) = 0 for all $v \in V$. This is obvious for v=0 because f(T) is linear by Thm E.3(a). So suppose $v\neq 0$. Let W be the T-cyclic subspace of V generated by v, and let $k = \dim(W)$. By Thm 5.22(a), there exists a_0, a_1, \dots, a_{k-1} s.t. $a_0v + a_1 T(v) + \dots + a_{k-1} T^{k-1}(v) + T^k(v) = 0$. Then Thus 5.22(b) implies that the char. poly. of T_W is $g(t) = (-1)^k (a_0 + a_1t + \dots + a_{k-1} t^{k-1} + t^k)$. Combining these two equations we get $g(T)(v) = (-1)^k (a_0 I + a_1 T + \dots + a_{k-1} T^{k-1} + T^k)(v) = (-1)^k (a_0v + a_1 T(v) + \dots + a_{k-1} T^{k-1}(v) + T(v)) = 0$.

$$\begin{array}{c} & \text{By Thm 5.21, g(t) divides } f(t). & \text{Hence there exists a polynomial } q(t) \text{ s.t.} \\ & f(t) = q(t) \cdot g(t). \\ & \text{So } f(T)(v) = \left(q(T) \cdot g(T)\right)(v) = q(t) \left(g(T)(v)\right) = q(T)(o) = 0 \\ & & \text{o by afore} \\ & & \text{as } q(T): V \neq V \text{ is linear.} \\ \hline & & \text{Impart.} \\ \hline &$$

In general, using Thm 5.23 and Thm E.3 we have:
(or allowing (Cayley-Hamilton for matrices) but
$$A \in M_{n\times n}(F)$$
, let $f(f)$ be its char. poly. Then
 $F(A) = 0$, the new zero matrix.
Proof.
Let $A \in M_{n\times n}(F)$ be given, consider $L_A \in \mathcal{L}(F^n)$, the lin. operator on F^n satisfying
 $[L_A]_g = A$, where B is the standord tasis for F^n .
Recall that the chor. poly. of L_A is by def. the chor. poly. of A . Then
 $f(A) = [f(L_A)]_{\mathcal{B}} = [T_0]_{\mathcal{B}} = 0$
 $f(A) = [f(L_A)]_{\mathcal{B}} = [T_0]_{\mathcal{B}} = 0$
 $T_{Min} E.3$ Then 5.23 on F^n

Direct sums of vector spaces
Let
$$T \in L(V)$$
. There is a way of decomposing V into simpler subspaces that offers insight into the behavior of T .
In the case when T is diagonalizable, the simpler subspaces are its eigenspaces.
 $\begin{bmatrix} bq \\ Let \\ W_1, W_2, ..., W_R \\ K \\ subspaces \\ q \\ q \\ K_2 \\ + v_2 + ... + v_R \\ v_i \in W_i \\ for i \in i \leq k3$,
which we denote by $W_i + W_2 + ... + W_R$ or $\sum_{i=1}^{2} W_i$. It is a subspace of V (Exercise!).
 $Ex \quad Let V = |R^2, W_i - the xg-plane, W_2 \\ the yz-plane. Then $|R^2 = W_i + W_2$, because for any vector $(q, g, c) \in R^3$ we have
 $(q, g, c) = (q, 0, 0) + (0, g, c)$
 $\in W_i \\ \in W_2$.$

But the presentation of (a, b, c) as a sum of vectors in W_1 and W_2 is not unique! For example, (a, b, c) = (a, b, o) + (o, o, c) is another presentation.

To fix this, we introduce a condition that assures unique presentation. Def Let $W_1, ..., W_k$ be subspaces of V. We call V the direct sum of the subspaces $W_1, ..., W_k$ and write $V = W_1 \oplus ... \oplus W_k$ it $V = \sum_{i=1}^{k} W_i$ and $W_i \cap \sum_{i=1}^{k} W_i = \frac{2}{3}$ for each j, $1 \ge j \le k$.

 $\begin{array}{l} E \\ E \\ E \\ (et V = R^{V}, W_{1} = \{(a, b, o_{0}): a, b \in IR^{3}, W_{2} = \{(o, 0, c, 0): c \in IR^{3}, W_{2} = \{(o, 0, 0, 0, d): d \in IR^{3}. For any (a, b, c, d) \in V we have: \\ (a_{1}b_{1}c_{1}d) = (a_{1}b_{1}, o, 0) + (o, 0, c_{1}o) + (o_{2}, o, d) \in W_{1} + W_{2} + W_{3}, so \\ V = 2^{1}W_{1}. \\ We also have: W_{1} \cap (W_{2} + W_{3}) = W_{2} \cap (W_{1} + W_{3}) = W_{3} \cap (W_{1} + W_{2}) = \frac{1}{2}03^{3}. \\ Thus V = W_{1} \oplus W_{2} \oplus W_{3}. \end{array}$

Then S. 10. Let
$$U_{ij}$$
, ..., W_{k} be confequence of a findim v.s. V . The following we equivalent.
a) $V = V_{ij} \in ..., W_{k}$.
b) $V = V_{ij} \in ..., W_{k}$.
c) Each vector velocing be uniquely written velocing view, $v_{ij} = 0$, then $v_{ij} = 0$ for all i.
c) Each vector velocing be uniquely written velocing velocing velocing view view.
d) Let v_{ij} can ordered besis for V_{ij} . Thus, $v_{ij} = 0$, $v_{ij} = 0$, then $v_{ij} = 0$ for all i.
c) Each vector velocing we uniquely written velocing velocing velocing velocing view.
d) Let v_{ij} can ordered besis for V_{ij} . Thus, $v_{ij} = 0$, $v_{ij} =$

This Mows us to characterize diagonalizability in terms of direct sums. Thm S.11 Given a v.s. V, dim(V) cp, TEL(V) is diagz. iff V is the direct sum of the eigenspores of T. Proof. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Suppose that T is diagz, and let & be an ordered basis for Ex;-Recall Thm S.g from 115A: Hence V is a direct sum of the Ex; 's by Thm S.10 (e). Conversely, supp. that V is a direct sum of the eigenspaces of T. For each is choose an ord bosis of Ex; By Thm S.10(d), S, V. Vok is a hosis for V. Since this basis consists of eigenvectors of V, we conclude that T is diagz. This gives a particular way of decomposing V as a direct sum of T-invariant subspaces when T is diage. What can be said for general T? Thm 5.24 Let TEL (V), dim(V) ~ and supp. V = W, @ ... @ Wk, where W; is a T-inv. subspace of V for each i (1 ≤ i ≤ k). Let fi(t) be the char. poly. of Tw;. Then fi(f)....fk(t) is the char. poly. of 1. Proof. By induction on R. Base step: supp. &= 2. Let Bi be an orde bosis for Wi, and B=BIUB2. Then B is an ord. tosis for V by Thun 5.10 (d). Lat A = [T]B, B; = [Twi]B; for i=1,2. $[et _{B_1} = \{v_1, ..., v_m \}, p_2 = \{v_{m+1}, ..., v_n\}, B = \{v_1, ..., v_n\}.$ We have [T] = [T(v)] ; ··· [T(v)] p let x 6 V be any vector, say x=a, V, + ... + an Vn for a; EF. let x:= Za; v: e W, x2=Za; Vi E W2. (as V=W & W2) If x e W, then also x2= (x-x1) e W, so x2 e W, A W2 & gog, so x2=0, then gi=0 for all mH ≤ i≤n. It x & W2, then also x1=(x-x2) & W2, so x1 & W1 NW2, so x1=0, then a1=0 for all 1≤i≤m. As v; eW, for 1414 and W, is T-inv, we have T(v;) EW,. Similarly, T(vi) + W2 for all m+1 = i = n. Hence for the coordinalk rectors we have. Ø Hence [T]B where 0,0' are zero-matrices of appropriate size.

Then for the char. poly of T we have:

$$f(t) = det(A - tI) = det(B_1 - tI)det(B_2 - tI) = f_1(t) \cdot f_n(t).$$
Biothe matrix
Inductive step. Assume the theorem is valid for $k-1 \ge 2$, and we prove it for k .
Suppose $V = W_1 \oplus \dots \oplus W_k$.
Let $W = W_1 + \dots \oplus W_{k-1}$.
Then W is a T-inv. subspore of $V(i_k x \in W_1 + \dots + W_{k-1}, say x = x_1 + \dots + x_{k-1}, for x_1 \in W_1, \#ann T(x) = T(x_1) + \dots$
 $\dots + T(x_{k-1}), and T(x_1) \in W_1 as W_1 is T-inv, so T(x) \in W_1 + \dots + W_{k-1}, \lambda$
And $V = W \oplus W_k$ (clearly $V \ge W + W_k$; if $x \in W \cap W_k$, then $x \in \Sigma : W_1 \cap W_k = \S \circ j$ as $V = W_1 \oplus \dots \oplus W_k$).
So by the case for $k = 2$, we get $f(t) = g(t) \cdot f_k(t)$,
where $g(t)$ is the char poly. of T_W .
Clearly $W = W_1 \oplus \dots \oplus W_{k-1}$, therefore $g(t) = f_1(t) \dots - f_{k-1}(t)$ by the induction hypothesis.
So $f(t) = g(t) \cdot f_k(t) = f_1(t) \dots + f_d(t)$.

Cor Lupp. That
$$T \in \mathcal{L}(V)$$
 is diage, dim $(V) \leq \omega_{1}$ and $\lambda_{1}, \dots, \lambda_{k}$ are its distinct eigenvalues.
By Thum 5.11, V is a direct sum of the eigenspaces of T.
Since each eigenspace is T-inv., we can apply Thum 5.24.
For each λ_{1} , consider $T_{E_{A_{1}}}$. Let δ_{1} be an ord. basis for $E_{\lambda_{1}}$. Let $dim(E_{\lambda_{1}}) = m_{1}$, write $\delta_{1} = \delta_{1} = \delta_{1$

Next we define an operation on matrices which corresponds to direct sum of subspaces.

$$\begin{cases} Deq \quad let \quad B_{1} \in M_{maxm}(F), \quad B_{2} \in M_{maxh}(F). \quad We \; deqine \; the \; direct sum \; op \; B_{1} \; and \; B_{2} \; , \; denoded \\ B_{1} \oplus B_{2} \; , \; as \; the \; (m+n) \times (m+n) = matrix \; A \; s.t. \\ \begin{pmatrix} (B_{1})_{ij} \; \text{ for } 1 \leq i_{j} \leq m, \\ A_{ij} = \; \begin{pmatrix} (B_{2})_{(1-m)}, (j-m) \; \text{ for } m+1 \leq i_{j} \leq n+M, \\ 0 \; & \text{otherwise.} \end{cases} \\ If \; B_{1}, \dots, B_{R} \; are \; square \; matrices \; over \; F \; , \; possibly \; q \; different \; sizes , \; we \; define \; the \; direct sum \\ q \; B_{1}, \dots, B_{R} \; recursively \; by \\ B_{1} \oplus \dots \oplus B_{R} = \; (B, \oplus \dots \oplus B_{R-1}) \oplus B_{R}. \\ If \; A = B_{1} \oplus \dots \oplus B_{R} \; , \; then \; if \; is \; q \; the \; form \; A = \; \begin{pmatrix} B_{1} \; 0 \; \dots \; 0 \\ 0 \; B_{2} \; \dots \; 0 \\ 0 \; 0 \; \dots \; B_{R} \; \end{pmatrix} \\ \left(\begin{array}{c} 1 \; 2 \; 0 \; 0 \; 0 \; 0 \\ 1 \; 1 \; 0 \; 0 \; 0 \; 0 \\ 0 \; 0 \; 0 \; 0 \; 0 \\ 1 \; 1 \; 0 \; 0 \; 0 \; 0 \\ 0 \; 0 \; 0 \; 0 \; 0 \\ 1 \; 1 \; 0 \; 0 \; 0 \; 0 \\ 0 \; 0 \; 0 \; 1 \; 2 \; 1 \\ 1 \; 1 \; 1 \\ \end{array} \right)$$

Thm 5.25 let T∈L(V) be a lin. op., dim (V) 400. Let W1, ..., Wg be T-inv. subspaces of V s.t. V=W1 ⊕ ... ⊕Wg. For each i, bet p; be an ordered basis for W;, and let p=p, V....VB4. Let A = [T]p and B;= [Twi]p;, for i=1,...,k. Then $A = B_1 \oplus \ldots \oplus B_{k}$ Proof Momework 3.