Review 115A: Inner products and norms From now on, F is either \mathbb{R} or \mathbb{C}.
Dep Let V be a v.s. over F. An inner product on V is a function $(x, y) \mapsto\langle x, y\rangle$ prom V^{2} to F s.t.
a) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle \quad \forall x, y, z \in V$
b) $\langle\langle x, y\rangle=c\langle x, y\rangle \quad \forall x, y \in V, c \in F$.
c) $\overline{\langle x, y\rangle}=\langle y, x\rangle \quad$ (complex conjugate), $\forall x, y \in V$.
d) $\langle x, x\rangle\rangle 0$ if $x \neq 0 \quad \forall x \in V$.

Exit The standard inner product on F^{n} is given by: for $x=\left(a_{1}, \ldots, a_{n}\right), y=\left(b_{1}, \ldots, b_{n}\right)$ in F^{n},
$\left\langle\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}\right.$.
Dy For $A \in M_{m \times n}(F)$, its conjugate transpose (or adjoint) is the $n \times m$ matrix A^{*} s.f. $A_{i j}^{*}=\overline{A_{j i}}$ †i,j.
Def A v.s. V over F endowed with a specific inner product is called an inner product space.
(Note: there can be many different inner products on the same v.s.)
If $F=\mathbb{C}$ - complex inner prod space.
If $F=\mathbb{R}$ - real inner prod, space.
(Thu 6.1 Let V be an IPS. (Inner Prod. Space). For all $x, y, z \in V$ and $c \in F$:
a) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
b) $\langle x,\langle y\rangle=\bar{c}\langle x, y\rangle$.
c) $\langle x, 0\rangle=\langle 0, x\rangle=0$.
d) $\langle x, x\rangle=0$ iff $x=0$.
e) If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$, then $y=z$.

Def LA V be an I.P.S. For $x \in V$, the norm (or length) of x is $\|x\|=\sqrt{\langle x, x\rangle}$.
Ex let $V=\mathbb{R}^{n}$ with the standard inner prod. If $x=\left(a_{1}, \ldots, a_{n}\right)$, then
$\|x\|=\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}$ is the usual $E_{\text {adidean }}$ length of a vector. If $n=1$, $\|a\|=|a|$.
The 6.2 Let V be an I.P.S. over F. Then $\forall x, y \in V$ and $c \in F$:
a) $\|c x\|=|c| \cdot\|x\|$.
b) $\|x\|=0$ iff $x=0$; always $\|x\| \geqslant 0$.
c) (Cauchy - Schwarz in equality) $|\langle x, y\rangle| \leqslant\|x\| \cdot\|y\|$.
d) (Triangle inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Dey Let V be an I.P.S.
Vectors $x, y \in V$ are orthogonal if $\langle x, y\rangle=0$.
A set $S \subseteq V$ is orthogonal if any two distinct vectors in S are orthogonal.
A vector $x \in V$ is a unit vector if $\|x\|=1$.
A set $S \leq V$ is orthonormal it S is orthogonal and consists of unit rectors.
Vote: for any $x \in V,\left(\frac{1}{\|x\|}\right) \cdot x$ is a unit vector.
115A: Gram-Schmidt orthogonalization and orthogonal complements.
Def Let V be an I.P.S. A subset of V is an or thonormal basis it it is an ordered basis that is orthonormal.
Ex The standard basis for $F^{\prime \prime}$ is orthonormal.
Thm 6.3 Let V be an I.P.S. and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ an orthogonal subset of V with $v_{i} \neq 0$.
It $y \in \operatorname{Span}(S)$, then $y=\sum_{i=1}^{d} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} r_{i}$.
Cor It in addition S is or thonormeal and $y \in \operatorname{Span}(S)$, then

Cor 2 Let V be an I.P.S. and $S \leq V$ orthogonal, $v=0$ for all $v \in S$.
Then S is lin. indep.
Tun 6.4. (Gram - Schmidt orthojonalization) Let V be an I.P.S. and $S=\left\{w_{1}, \ldots, w_{n}\right\} \leq V$ lin. indep. Let $S^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$ and v_{k} are defined recursively as follows:
$v_{k}=w_{k}-\sum_{j=1}^{a-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}$ for $2 \leq k \leq h$.
Then S^{\prime} is an orthogonal set of nonzero vectors and $\operatorname{Span}\left(S^{\prime}\right)=\operatorname{Span}(S)$.
Using it, one obtains:
Thu 6.5 Let $V \neq\{0\}$ be an I.P.S. with $\operatorname{dim}(V)<\infty$.
Then V has an orthonormal has is $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$.
And for any $x \in V, x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}$.
Cor Let v kea an I.P.S. with $\operatorname{dim}(v)<\infty$ and an orthonormal has is $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $T \in L(V), A=[T]_{\beta}$. Then for any i, j we have $A_{i j}=\left\langle T\left(v_{j}\right), v_{i}\right\rangle$.

Dy Let $\phi \neq S \subseteq V$ and V an I.P.S. Let $S^{\perp}=\{x \in V:\langle x, y\rangle=0$ for $a l l y \in S\}$ - the orthogonal complement of S.
Note: S^{\perp} is a subspace of V for any $S \subseteq V,\{0\}^{\perp}=V$ and $V^{\perp}=0$.
Thy 6.6 Let W with $\operatorname{dim}(W)<\infty$ be a subspace of an I.P.S. V. Let $y \in V$.
Then there exist unique vectors $u \in W$ and $z \in W^{+}$s.t. $y=u+z$.
Moreover, if $\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal basis for W, then

$$
u=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i} .
$$

Def The vector n in the theorem is called the orthogonal projection of y on W.
con u is the unique vector in W that is "closest "to y : for any $x \in W,\|y-x\| \geqslant\|y-u\|$, and this is an equality iff $x=u$.

Thu 6.7 Supp. $S=\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal set in an n-dim. inner product space V. Then:
a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.
b) If $W=\operatorname{Span}(S)$, then $S_{1}=\left\{v_{k+1}, \cdots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
c) If W is any subspace of V, then $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)$, and $V=W \oplus W^{\perp}$.

115 A: The adjoint of a lin. operator.
Let V be an I.P.S., and $y \in V$.
Then the function g : $V \rightarrow F$ defined by $g(x)=\langle x, y\rangle$ is linear. Conversely:
Thu 6.8. Let V be an I.P.S. over F, $\operatorname{dim}(V)<\infty$.
Let $g: V \rightarrow F$ Be a lin. transformation.
Then there exists a unique vector $y \in V$ s.t. $g(x)=\langle x, y\rangle$ for all $x \in V$.
[Thu 6.9 Let V be a fin. dim. IPS., and let $T \in L(V)$.
Then the re exists a unique function $T^{*}: V \rightarrow V$ s.t.

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle \text { for all } x, y \in V \text {. }
$$

Moreover, T^{*} is linear.
Def The unique lin. op. T^{*} on V satisfying $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ for all $x, y \in V$ is called the adjoint of T.

Remark Every $T \in L(V)$ has an adjoint if $\operatorname{dim}(V)<\infty$. This is not true if $\operatorname{dim}(V)=\infty$!
(see Textbook, Exercise 6.3.24)
Thu 6.10 Let V be an I.P.S. with $\operatorname{dim}(V)<\infty$, let β be an orthonormal fasts for V. If $T \in L(V)$, then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$.

Cor If $A \in M_{n \times n}(F)$, then $L_{A^{*}}=\left(L_{A}\right)^{*}$.
Thu 6.11 Let V be an I.P.S. and $T, U \in L(V)$. Then:
a) $(T+u)^{*}=T^{*}+u^{*}$.
6) $(c T)^{*}=\bar{c} T^{*}$ for any $c \in F$. (the same hold for matrices and the ir
c) $(T U)^{*}=U^{*} T^{*}$.
d) $T^{* *}=T$.
e) $I^{*}=I$.

Normal and self-adjoint operators
(Given $T \in L(V)$, we know:
V has a basis consisting of eigenvectors for $T \Leftrightarrow T$ is diag.
Now want to understand:
Now want to understand:
Lemma Let $T \in L(V), V$ an I.P.S. with $\operatorname{dim}(V)<\infty$.
If T has an e.vect., then so does T^{*}.
Proof Supp. $v \neq 0$ is an event of T with e.val. λ.
Then for any $x \in V$:
$0=\langle 0, x\rangle=\langle(T-\lambda I)(v), x\rangle=\left\langle v,(T-\lambda I)^{*}(x)\right\rangle \stackrel{\downarrow}{=}\left\langle v,\left(T^{*}-\bar{\lambda} I\right)(x)\right\rangle$
hence v is or thogonal to $R\left(T^{*}-\lambda I\right)$.
In particular, $v \notin R\left(T^{*}-\bar{\lambda} I\right)$ as $v \neq 0$, so the lin.op. $T^{*}-\bar{\lambda} I$ is not onto.
As $\operatorname{dim}(v)<\infty$, this implies it is also not one-to-one, so $N\left(T^{*}-\lambda I\right) \neq\{0\}$.
Take any $0 \neq \omega \in N\left(T^{*}-\bar{\lambda} I\right)$, then $T^{*}(\omega)=\bar{\lambda} \omega$, hence w is an e.vect. of T^{*} with e.val. I.
Thu 6.14 (Schur) Let $T \in L(V)$ for V an I.P.S. with $\operatorname{dim}(V)<\infty$.
Supp. that the char. poly. of T splits.
Then there exists an orthonormal basis β for V s.t. the matrix $[T]_{\beta}$ is upper triangular.
Proof.
By induction on $n=\operatorname{dim}(V)$.
Clear for $n=1$ (as any 1×1 matrix is upper triangular)
suppose holds for $n-1$.
let $T \in L(V)$ with $\operatorname{dim}(V)=n$ be given, and its char. poly. $f(t)$ splits.
Then T has an e.vect. (recall by Thu 5.2: $\lambda \in F$ is an e.val of T iff $f(\lambda)=0$. As $f(t)$ splits over F, it has a root in F-hence some e.val. $\lambda \in F$, and there is an e.vect. $v \in V$ correep. to it). By the previous lemma, T^{*} also has an e.vect. z, and normalizing it we may assume z is a unit e.vect. with e.val. 1 .
Let $W=\operatorname{Span}(\{z\})$.
Claim W^{+}is $T_{\text {-invariant. }} \quad I_{f} y \in W^{+}$and $x \in W$, then $x=c z$ for some $c \in F$, hence $\langle T(y), x\rangle=\left\langle T(y),(z\rangle=\left\langle y, T^{*}(c z)\right\rangle=\left\langle y, c T^{*}(z)\right\rangle=\langle y, c \lambda z\rangle=\overline{c \lambda}\langle y, z\rangle \stackrel{\Downarrow}{=c \lambda} \cdot 0=0\right.$. So $T(y) \in W^{+}$. Hence W^{+}is T-inv.

By Thu 5.21, the char. poly. of $T_{W^{\perp}}$ divides the char. poly. of T, so it also splits.
By $\operatorname{Thm} 6.7(c), \operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(v)-\operatorname{dim}(w)=\operatorname{dim}(v)-1=n-1$.
By the induction hypothesis applied to $T_{W^{\perp}}$ we obtain an orthonormal basis γ for W^{\perp} s.t. $\left[T_{w^{1}}\right]_{\gamma}$ is upper triangular.
Then $\beta=\gamma \cup\{z\}$ is an orthonormal set (as $z \in W$ and $\gamma \leq W^{\perp}$ is or thegoval, and z is a unit rector).
Then β is lin. indep. (by Cor 2 of The 6.3) of size $n=\operatorname{dim}(V)$, so β is an orthonormal pros is for V. And, if $r=\left\{z_{1}, \ldots, z_{n-1}\right\}$, we have:

Now we return to determining what ??? above should be.
A sums that V admits an orthonormal basis β of e. vent's for T.
Then in particular $[T]_{\beta}$ is a diagonal matrix.
But then $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ is also diagonal.
As diagonal matrices commute, we conclude that T and T^{*} commute. This mot ivates:
Def Let V be an I.P.S., and $T \in L(V)$. We say T is normal if $T T^{*}=T^{*} T$.
(An $n \times n$ real or complex matrix A is normal if $A A^{*}=A^{*} A$.
So V admits an orthonormal basis of event's for $T \Rightarrow T$ is normal. What about "\&" ?

This shows that " E " can fail for $F=\mathbb{R}$. We show that at least " E " holds for $F=\mathbb{C}$!
The 6.15 Let V be an I.P.S., let $T \in L(V)$ be normal. Then:
a) $\|T(x)\|=\left\|T^{*}(x)\right\| \quad \forall x \in V$.
b) $T-c I$ is normal $\forall c \in F$.
c) If x is an e.vect. of T, then x is also an e.vect. of T^{*}.

In fact, if $T(x)=\lambda x$, then $T^{*}(x)=\bar{\lambda} x$.
d) If $\lambda_{1} \neq \lambda_{2}$ are e.vals of T with corresp. e.vect's x_{1}, x_{2}, then x_{1} and x_{2} are or thogonal.

Proof. a) For any $x \in V$,

Hence $\|T(x)\|=\left\|T^{*}(x)\right\|$ as norm is always non-negative.
b) By $\operatorname{Thn} \frac{6.11}{(T-c I)^{*}}=T^{*}-\bar{c} I$

Then $(T-c I)(T-c I)^{*}=(T-c I)\left(T^{*}-\bar{c} I\right)=T T^{*}-T \bar{c} I-c I T^{*}+c I \tau I=$
$=T_{A}^{*} T-\bar{c} I^{\top}-T^{*} c I+\bar{c} I c I$.
as \hat{T} is urrmol as T is lin. as T^{*} is lin.
And $(T-c I)^{*}(T-c I)=\left(T^{*}-i I\right)(T-c I)=T^{*} T-T^{*} c I-c I T+\bar{c} I c I$
Hence $(T-c I)(T-c I)^{*}=(T-c I)^{*}(T-c I)$, so $T-c I$ is normal.
c) Supp. $T(x)=\lambda x$ for some $x \in V, \lambda \in F$. Let $U=T-\lambda I$.

Then $U(x)=0$, and U is normal by (b). Thus (a) implies:

$$
0=\|U(x)\|=\left\|U^{*}(x)\right\|=\left\|\left(T^{*}-\bar{\lambda} I\right)(x)\right\|=\left\|T^{*}(x)-\bar{\lambda} x\right\| \text {. Hence } T^{*}(x)=\bar{\lambda} x \text {. }
$$

The 6.11
d) Let $\lambda_{1} \neq \lambda_{2}$ be e.val's of T with corresp. e.vect's x_{1}, x_{2}. By (c):

$$
\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle=\left\langle x_{1}, \bar{\lambda}_{2} x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle .
$$

Since $\lambda_{1} \neq \lambda_{2}$, this implies $\left\langle x_{1}, x_{2}\right\rangle=0$.
Thu 6.16 Let $T \in L(V), V$ a C.I.P.S. (Complex I.P.S.) with $\operatorname{dim}(V)<\infty$.
Then T is normal \Leftrightarrow there exists an orthonormal basis for V consisting of e.vect's for T.
Proof \Rightarrow Supp. T is normal.
By the undamental Theorem of algebra, every polynomial over $F=\mathbb{C}$ splits.
In particular, the char. poly. of T splits.
By Shur's the 6.14, there is an orthonormal has is $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ for V s.t. $[T]_{\beta}=A$ is upper Then v_{1} is an e.vect. of T (as $[T]_{\beta}$ is upper triang, $\left[T\left(v_{1}\right)\right]_{\beta}=\left(\begin{array}{l}\lambda \\ 0 \\ \vdots \\ 0\end{array}\right)$ for some $\lambda \in F$, so $\left.T\left(v_{1}\right)=\lambda v_{1}\right)$.
Assume that v_{1}, \ldots, v_{k-1} are e.vect's of T. We claim that then v_{k} is abs an e.vect. of T. (as then by induction, starting with v_{1}, all v_{i} are e.vect's of T and we are done).
Consider any $j<k$.
LeA $\lambda_{j} \in F$ denote the e.val. of T corresponding to v_{j}.
By Thu 6.15, $T^{*}\left(v_{j}\right)=\bar{\lambda}_{j} v_{j}$.
We have:

$$
\left[T\left(v_{k}\right)\right]_{\beta}=A \cdot\left[v_{k}\right]_{\beta}=A \cdot\left(\begin{array}{c}
0 \\
\vdots \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) \int_{n-k}=k=\left(\begin{array}{c}
A_{11} \cdot 0+\ldots+A_{1, k-1} \cdot 0+A_{1, k} \cdot 1+A_{1, k+1} \cdot 0+\ldots+A_{1, n} \cdot 0 \\
\vdots \\
A_{n} \cdot 0+\ldots+A_{n, k-1} \cdot \theta+A_{n, k} \cdot 1+A_{n, k+1} \cdot 0+\ldots+A_{n, n} \cdot 0
\end{array}\right)=
$$

$$
=\left(\begin{array}{c}
A_{1 k} \\
\vdots \\
A_{n, k}
\end{array}\right)=\left(\begin{array}{c}
A_{1 k} \\
\vdots \\
A_{k k} \\
\vdots \\
0
\end{array}\right)
$$

as $A_{i, k}=0$ for all $i>k$ since A is upper triangular.
That is, $T\left(v_{k}\right)=A_{1 k} \cdot v_{1}+\ldots+A_{k k} \cdot v_{k}$.
And by corollary to Thu 6.5 we have:

$$
A_{j k}=\left\langle T\left(v_{k}\right), v_{j}\right\rangle=\left\langle v_{k}, T^{*}\left(v_{j}\right)\right\rangle=\left\langle v_{k}, \bar{\lambda}_{j} v_{j}\right\rangle=\lambda_{j}\left\langle v_{k}, v_{j}\right\rangle \stackrel{\downarrow}{=} 0 .
$$

As this holds for every $j<k$, we conclude $T\left(v_{k}\right)=A_{k k} v_{k}$, hence v_{k} is an e.vect. of T.
\Leftarrow Already proved just before the definition of "normal".
What about R.I.P.S. (Real I.P.S.)?
Example 1 shows that "T normal" is not enough to guarantee existence of an or thonormal basis of e.vect's. So we need a stronger condition:
Dy Let $T \in L(V)$ for V an I.P.S.
T is self-adjoint (Hermitian) it $T=T^{*}$.
A matrix $A \in M_{n+n}(F)$ is self-adjoint if $A=A^{*}$.
Remark O_{f} course, T self-adjoint $\Rightarrow T$ is normal, and T is self-adjoint $\Leftrightarrow[T]_{\beta}$ is self-adjoint for an orthonormal las is β.

Lemma Let $T \in L(V)$ be self-adjoint and $\operatorname{dim}(V)<\infty$. Then:
a) Every e.val. of T is real
(holds by definition 'f $F=\mathbb{R}$, but is meaningful for $F=\mathbb{C}$).
b) Supp. V is a R.I.P.S. Then the char. poly of T splits.

Proof
a) Supp. $T(x)=\lambda x$ for $x \neq 0$ in V.

As a self-adjoint operator is also normal, by Tho 6.15(c) we have:
$\lambda x=T(x)=T^{*}(x)=\bar{\lambda} x$. As $x \neq 0$, this implies $\bar{\lambda}=\lambda$, hence λ is real.
self-adjoint
b) Let $n=\operatorname{dim}(V), \beta$ an orthonormal basis for V, and $A=[T]_{\beta}$.

Then A is self-adjoint.
Let T_{A} be the lin.op. on \mathbb{C}^{n} defined by $T_{A}(x)=A x$ for $a l l x \in \mathbb{C}^{n}$. (note that $F=\mathbb{R}$).
Note that T_{A} is selt-adjoint because $\left[T_{A}\right]_{\gamma}=A$, where γ is the standard ordered (or thonorinal) basis for \mathbb{C}^{n}.
By (a), the c.val's of T_{A} are real.
By the fundamental theorem of algebra, the char. poly of T_{A} splits into factors of the form $t-\lambda$, for λ an e.val. of T_{A}.
Since each e.val. λ of T_{A} is real, i.e. $\lambda \in \mathbb{R}$, it follows that the char. poly. of T_{A} already splits over \mathbb{R} !
But T_{A} has the same char. poly as A, which has the same char. poly. as T.
Therefore the char. poly. of T splits.
We are ready to prove an analog of Thy 6.16 for R.I.P.S. instead of C.I.P.S.
The 6.17 Let $T \in L(V)$ for V a R.I.A.S. with $\operatorname{dim}(V)<\infty$.
Then T is self-adjoint \Leftrightarrow there exists an orthonormal fasis β for V consisting of e.vect's of T.
Prop. \Rightarrow
Supp. T is self-adjoint.
By the lemma, (b), the char. poly. of T splits over $F=\mathbb{R}$.
Applying Shur's Thu 6.14, we find an or thonormal basis β for V s.t. The matrix $A=[T]_{\beta}$ is upper triangular. But
$A^{*}=[T]_{\beta}^{*}=\left[T^{*}\right]_{\beta}=[T]_{\beta}=A$ as T is self-adjoint.
So A and A^{*} are foth upper triangular, therefore A must be a diagonal matrix.
Thus β must consist of event's of T.
$E I_{t} \beta$ is an orthonormal basis for V consisting of e.vect's for T, then we see that $[T]_{\beta}=\left(\begin{array}{ccc}\lambda_{1} & & 0 \\ & \lambda_{2} & \\ 0 & \ddots & \lambda_{n}\end{array}\right)$ for some $\lambda_{i} \in F=\mathbb{R}$.
But $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ by Thy 6.10., and since $\lambda_{i} \in \mathbb{R}$ we have $\bar{\lambda}_{i}=\lambda$, so $\left[T^{*}\right]_{\beta}=[T]_{\beta}$, hence $T^{*}=T$, so T is normal.

Unitary and orthogonal operators and their matrices
In this section we study lin operators that preserve length of rectors.
Dep let $T \in h(V)$ for V an I.P.S. over F with $\operatorname{dim}(V)<\infty$.
T is an isometry if $\|T(x)\|=\|x\|$ for all $x \in V$.
$I_{f} F=\mathbb{C}$, we call such T unitary
If $F=\mathbb{R}$, we call such T or the ronal.
Ex Rotation and reflection operators on \mathbb{R}^{2} are or thogonal.
Thu 6.18 Let $T \in L(V), V$ an I.P.S. with $\operatorname{dim}(V)<\infty$. The following are equivalent:
a) $T T^{*}=T^{*} T=I$. (hence every isometry is a normal operator, but not vice versa!)
b) $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.
c) $I_{\mathcal{F}} \beta$ is an orthonormal fonsis for V, then $T(\beta)$ is an orthonormal basis for V.
d) There exists an orthonormal basis for V sit. $T(\beta)$ is an arthouerwal basis for V.
c) $\|T(x)\|=\|x\|$ for $a l l x \in V$, that is T is an isometry.

To prove it, we will need the following
Lemma Let U be a self-adjoint op. on a tin. dim I.P.S. V.
If $\langle x, U(x)\rangle=0$ for all $+\in V$, then $U=T_{0}$ - the zero-fronspormation on V.
Proof By Tun 6.16 if $F=\mathbb{C}$ or Thu 6.17 if $F=\mathbb{R}$, there is an or tho normal basis β for V consisting of event's for U.
It $x \in \beta$, then $U(x)=\lambda x$ for some $x \in F$. Thus
$0=\langle x, u(x)\rangle=\langle x, \lambda x\rangle=\lambda\langle x, x\rangle$.
As $x \in \beta$ is $\neq 0,\langle x, x\rangle\rangle 0$. Hence $\bar{\lambda}=0$.
So $U(x)=0$ for all $x \in \beta$, thus as U is linear, $U(x)=0$ for all $x \in V$, so $U=T_{0}$.
Proof of The 6.18
(a) $\Rightarrow(b)$ Let $x, y \in V$.

Then $\langle x, y\rangle=\langle\underbrace{T^{*} T(x)}_{=I \log (x)}, y\rangle \underset{\text { adjoint of } T^{*}}{\bar{\lambda}}\left\langle T(x),\left(T^{*}\right)^{*}(y)\right\rangle=\underset{\text { Thu } 6.11(d)}{\bar{n}}\langle T(x), T(y)\rangle$.
(b) \Rightarrow (c) Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be an or thenormal basis for V.

So $T(\beta)=\left\{T\left(r_{1}\right), \ldots, T\left(r_{n}\right)\right\}$.
As $\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}$, by (b) we have $\left\langle T\left(v_{i}\right), T\left(v_{j}\right)\right\rangle=\delta_{i j}$.
And $\left\|T\left(v_{i}\right)\right\|^{2}=\left\langle T\left(v_{i}\right), T\left(v_{i}\right)\right\rangle \stackrel{(6)}{=}\left\langle v_{i}, v_{i}\right\rangle=\left\|v_{i}\right\|^{2}=1$, hence all $T\left(v_{i}\right)$ are unit vectors, and $T(\beta)$ is an orth
normed bon is for V.
(c) \Rightarrow (d) Obvious, as by (c), (d) holds for any orthonormal β.
$(d) \Rightarrow()_{n}$ Let $x \in V$, and $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. Then
$x=\sum_{i=1}^{n} a_{i} v_{i}$ for some $a_{i} \in F$. So: ${ }_{n}^{\beta \text { B is }}$ and
$\|x\|^{2}=\left\langle\sum_{i=1}^{n} a_{i} v_{i}, \sum_{j=1}^{n} a_{j} v_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{a}_{j}\left\langle v_{i}, v_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{a}_{j} \delta_{i j}=\sum_{i=1}^{n} a_{i} \bar{a}_{i}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$
Applying the same calculation to $T(x)=\sum_{i=1}^{n} a_{i} T\left(r_{i}\right)$ and using that $T(\beta)$ is or thonormal ty (d), we get
$\|T(x)\|^{2}=\sum_{i=1}^{n}\left|a_{i}\right|^{2}$.
Hence $\|T(x)\|=\|x\|$.
(e) $\Rightarrow<(a)$ For any $x \in V$ we have
$\langle x, x\rangle=\|x\|^{2}=\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle$.
So $\left\langle x,\left(I-T^{*} T\right)(x)\right\rangle=0$ for all $x \in V$.
Let $U=I-T^{*} T$. Then U is selt-adjoint $\left(U^{*}=\left(I-T^{*} T^{*}=I^{*}-\left(T^{*} T\right)^{*}=I-T^{*} T^{* *}=I-T^{*} T=U\right)\right.$. And $\langle x, U(x)\rangle=0$ for all $x \in V$. Then by the Lemma $T_{0}=U=I-T^{*} T$, therefore $T^{*} T=I$.
Recall that for two square matrices $A, B \in M_{n \times n}(F)$, if $A B=I$, then also $B A=I(115 A)$

Hence, taking β amy or thonormal basis, $T^{*} T=I \Rightarrow\left[T^{*}\right]_{\beta}[T]_{\beta}=I \Rightarrow[T]_{\beta}\left[T_{\beta}^{*}\right]=I$ $\Rightarrow T T^{*}=I$, so (a) holds.

Cor 1 Let $T \in L(V)$ on V a R.I.P.S. with $\operatorname{dim}(V)<\infty$. Then: V has an orthonormal basis of e.vect's of T with the corresp. e.val's of absolute value 1 \Leftrightarrow
T is bath self-adjoint and orthogonal.
Proof
\Rightarrow Supp. V has an orthonormal basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ s.t. $T\left(v_{i}\right)=\lambda_{i} v_{i}$ and $\left|\lambda_{i}\right|=1$ for all i. By Thu 6.17, T is selt-ad joint.
Hence $\left(T T^{*}\right)\left(v_{i}\right)=T\left(T^{*}\left(v_{i}\right)\right)=T\left(T\left(v_{i}\right)\right)=T\left(\lambda_{i} v_{i}\right) \stackrel{v}{=} \lambda_{i} \lambda_{i} v_{i}=\lambda_{i}^{2} v_{i}=v_{i}$ for each i.
So $T T^{*}=I$. And then, as in the end of the previous proof, also $T^{*} T=I$, so T is orthogonal by Thu 6.18 (a)
E If T is self-adjoint, then by Thu 6.17 V has an orthonormal basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ s.t. $T\left(v_{i}\right)=\lambda_{i} v_{i}$. If T is also orthogonal, we have
$\left|\lambda_{i}\right| \cdot\left\|v_{i}\right\|=\left\|\lambda_{i} v_{i}\right\|=\left\|T\left(v_{i}\right)\right\|=\left\|v_{i}\right\|$, so $\left|\lambda_{i}\right|=1$ for all i.
Cor 2 Let $T \in L(V)$ for V a C.I.P.S. with $\operatorname{dim}(V)<\infty$. Then:
V has an orthonormal basis of erect's of T with corresp. e.val's of absolute value 1
$\Leftrightarrow T$ is unitary.
Proof Similar to the proof of Corollary 1 (see H/W 6.)
Ex 1 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation by $\theta, 0<\theta<\pi$. Then T preserves length of vectors, hence it abs preserves the standard inner product on \mathbb{R}^{2} by The 6.18.
For β standard basis, $[T]_{\beta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. A direct calculation shows that $[T]_{\beta} \neq[T]_{\beta}^{*}$, Also follows by Thu 6.15 as there are no e.vect's.
In fact, T^{*} is the rotation by $-\theta$.
Def Let L be a 1 -dimensional ambsace of $V=\mathbb{R}^{2}$. Then L is a line through the origin.
A lin.op. Ton \mathbb{R}^{2} is called a reflection of \mathbb{R}^{2} about L

if $T(x)=x$ for all $x \in L$ and $T(x)=-x$ for all $x \in L^{\perp}$.
Ex 3 Let T be a reflection of \mathbb{R}^{2} about a line L through the origin.
Then T is an or thogonal operator:
Take any $v_{1} \in L, v_{2} \in L^{\perp}$ with $\|v\|=,\left\|v_{2}\right\|=1$.
Then by dep. $T\left(v_{1}\right)=v_{1}$ and $T\left(v_{2}\right)=-v_{2}$.
Thus v_{1}, v_{2} are e.vect's with e.val's 1 and -1 , respectively.
And $\left\{v_{1}, v_{2}\right\}$ is an orthonormal basis for \mathbb{R}^{2}.
Hence T is an orthogonal operator by Corollary 1 above.
Matrices of unitary and or thagonal operators
Def A square matrix A is or thagonal if $A^{t} A=A A^{t}=I$ and unitary if $A^{*} A=A A^{*}=I$.
As always, by Thu 6.10, T is unitary/ or thogonal $\Leftrightarrow[T]_{\beta}$ is unitary/or thoyonal, for some or thonormal basis β of V.

Remark I) $A A^{*}=I \Leftrightarrow$ the rows of A_{n} form an orthonormal basis for F^{n}.
As $\delta_{i j}=I_{i j}=\left(A A^{*}\right)_{i j}=\sum_{k=1}^{n} A_{i k} A_{k j}^{*}=\sum_{k=1}^{n} A_{i k} \overline{A_{j k}}$, and the last term is the (standard) inner prod of the i^{+h} and $j^{\text {th }}$ rows of A.
2) $A^{*} A=I \Leftrightarrow$ the columns of A form an orthonormal basis for F^{n}.

Def We say that a matrix $A \in M_{n \times n}(F)$ is unitarily/ orthogonally equivalent to a matrix $B \in M_{n \times n}(F)$ if there exists a unitary loo thogonal matrix $P \in M_{n * n}(F)$ s.t. $A=P^{*} B P$.

Remark This is an equivalence relation on $M_{n \times n}(F)$ (see H(W6).
Thu 6.19 Let $A \in M_{n \times n}(\mathbb{C})$. Then A is normal $\Leftrightarrow A$ is unitarily equivalent to diagonal matrix.
Proof.
$=$ Suppose $A=P^{*} \Delta P$ for P a unitary matrix and D a diagonal matrix. Then:

$$
\begin{aligned}
& A A^{*}=\left(P^{*} D P\right)\left(P^{*} D P\right)^{*}=\left(P^{*} D P\right)\left(P^{*} D^{*} P^{* *}\right)=\left(P^{*} D P\right)\left(P^{*} D^{*} P\right)=P^{*} D P^{*} P^{*} P \overline{\bar{r}} \bar{P} \\
= & P^{*} D I D^{*} P=P^{*} D D^{*} P .
\end{aligned}
$$

Similarly, $A^{*} A=P^{*} D^{*} D P$.
Since D is a diagonal matrix, $D D^{*}=D^{*} D$. Thus $A A^{*}=A^{*} A$, so A is normal.
\Rightarrow Assume A is normal.
By Thu 6.16 applied to L_{A}, there exists an orthonormal basis β for F^{n} consisting of eigenvectors of A.

By Tim 2.23 from $115 A,\left[L_{A}\right]_{\beta}=Q^{-1} A Q$, where Q is the $n \times n$ matrix whole (its corollary)
$j^{\text {th }}$ column is the $j^{\text {th }}$ vector of β; and $D=\left[L_{A}\right]_{\beta}$ is a diagonal matrix.
Hence the columns of Q form an or thonormal basis for F^{n}, so by the remark above $Q^{*} Q=I$. But since these are square matrices, then also $Q Q^{*}=I$, so Q is unitary and $Q^{*}=Q^{-1}$.
Hence $D=Q^{*} A Q$, so A is unitarily equivabut to a diagonal matrix.
Thu 6.20 Let $A \in M_{n \times n}(\mathbb{R})$. Then A is symmetric $\Leftrightarrow A$ is or thogonally equivalent to a real diagonal matrix.
Proof Similar to Thu 6.ig (see H/W 6).
Finally, we have a matrix form of Schur's theorem:
Thu 6.21 Let $A \in M_{n \times n}(F)$ be such that its char. poly. splits over F.
a) If $F=\mathbb{C}$, then A is unitarily equivalent to a complex upper triangular matrix.
b) If $F=\mathbb{R}$, then A is orthogonally equivalent to a real upper triangular matrix.

