Orthogonal projections and the spectral theorem
Def i) $W_{e}$ say That $T \in L(V)$ is the projection on $W_{1}$ along $W_{2}$, where $W_{1}, W_{2}$ are subspores of $V$ sit. $V=W_{1} \oplus W_{2}$, it whenever $x=x_{1}+x_{2}$, with $x_{i} \in W_{i}$, then $T(x)=x_{1}$.
2) By a $H / W$ exercise, we know that then $R(T)=W_{1}$ and $N(T)=W_{2}$.
3) We say that $T \in L(V)$ is a projection it there exist $W_{1}$ and $W_{2}$ satisfying the definition above for $T$.
4) By HIW, $T$ is a projection if and only if $T=T^{2}$.

Because $V=W_{1} \oplus W_{2}=W_{1} \oplus W_{3}$ does not imply that $W_{2}=W_{3}$, we see that $W_{1}$ alone does not determine $T$ uniquely. But it does for or thojonal projections, as defined below.
Def Let $V$ be an I.P.S., and let $T \in L(V)$ be a projection. We say that $T$ is an orthogonal projection it $R(T)^{\perp}=N(T)$ and $N(T)^{\perp}=R(T)$.
Rem From 115A, we know that it $V$ is fin rite dimensional and $W$ is a subspace of $V$, then $\left(W^{\perp}\right)^{\perp}=W$. Hence each of the two conditions in this definition already implies the other one: if $R(T)^{\perp}=N(T)$, then $R(T)=R(T)^{\perp \perp}=N(T)^{\perp}$, and vice versa.

Rem This is not true if $\operatorname{dim}(V)=\infty$. Consider the spore $V=e^{2}$, i.e. $V=\left\{\left(a_{i}\right)_{i \in N}:\left(a_{i}\right)\right.$ is an infinite sequence of real numbers and $\sum_{i \in N} a_{i}^{2}<\infty$. It is a R.I.P.S. with the following operations:

$$
\begin{aligned}
& \left(a_{i}\right)_{i \in \mathbb{N}}+\left(b_{i}\right)_{i \in \mathbb{N}}=\left(a_{i}+b_{i}\right)_{i \in \mathbb{N}} \quad \forall\left(a_{i}\right),\left(b_{j}\right) \in l^{2}, c \in \mathbb{R} \\
& c \cdot\left(a_{i}\right)_{i \in \mathbb{N}}=\left(c \cdot a_{i}\right)_{i \in \mathbb{N}} \\
& \left\langle\left(a_{i}\right)_{i \in \mathbb{N}},\left(b_{i}\right)_{i \in \mathbb{N}}\right\rangle=\sum_{i=1}^{\infty} a_{i} b_{i} .
\end{aligned}
$$

Note that $\operatorname{dim}(V)=\infty$. Consider the subspace $W=\left\{\left(a_{i}\right) \in l^{2} \therefore \exists_{j}\right.$ st. $a_{i}=0$ for all $\left.i>j\right\}$.
Then we have:

- $W^{\perp}=\{0\}$ (Exercise! Hint: me that $W$ is dense in $V$, i.e. $\forall \varepsilon \in \mathbb{R}_{>0} \forall x \in V \quad \exists y \in W \quad \| x-y \mathbb{k}$.
- $W^{+1}=\{0\}^{+}=V$.
But $W \neq V \quad\left(e . g\right.$. the sequence $\left(\frac{1}{2^{i}}\right)_{i \in \mathbb{N}} \in V$ as $\sum_{i=1}^{\infty} \frac{1}{2^{i}}<\infty$, but $\left(\frac{1}{2^{i}}\right)_{i \in \mathbb{N}} \notin W$ as $\left.\frac{1}{2^{i}} \neq 0 \forall i\right)$. So $W \neq W^{\perp+}$.

Let $W$ be a subs pare of $V, \operatorname{dim}(W)<\infty$.
By Thu 6.6, every $y \in V$ can be written as:
$y=u+z$ for unique $u \in W$ and $z \in W^{+}$.
Serine the map $T: V \rightarrow V$ by $T(y)=u$.
We see from definition above that $T$ is an orthogonal projection on $W$.
Moreover, there exists exactly one orthogonal projection on $W$ :
it $T, u$ are orthogonal projections on $W$, then $R(T)=W=R(u)$; hence $N(T)=R(T)^{\perp}=R(u)^{\perp}=N(u)$; then for any $y \in V$ we have $y=u+z$ for unique $u \in R(T)=R(u)$ and $z \in N(T)=N(u)$. By def. of projection, $T(y)=u=U(y)$.
Def We call $T$ the orthogonal projection of $V$ on $W$.
Ex Difference between projection on $W$ and orthogonal projection on $W$. let $V=\mathbb{R}^{2}, W=\operatorname{span}\{(1,1)\}$. Let $u, T$ be as in the picture. Then $T$ is an or thryonal probation, but $U$ is a different projection on $W$.
Note: $v-T(v) \in W^{\perp}, \quad v-U(v) \notin W^{+}$.

We have an algebraic description of orthogonal projections:
Thu 6.24 let $V$ be an I.P.S. and $T \in \mathcal{L}(V)$. Then:
$T$ is an or thogonal projection (on some subs pane $W$ ) $\Leftrightarrow T$ has an adjoint $T^{*}$ and $T^{2}=T=T^{*}$.
Proof Supp. $T$ is an orthogonal projection. (we are not assuming
$\Rightarrow$
$\downarrow$ As $T^{2}=T$ because $T$ is a projection, only need to show that $T^{*}$ exists and $T=T^{*}$. By def, $V=R(T) \oplus N(T)$ and $R(T)^{\perp}=N(T)$.
Let $x, y \in V$, then $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ for some $x_{1}, y_{1} \in R(T), x_{2}, y_{2} \in N(T)$. Then:
$\langle x, T(y)\rangle=\left\langle x_{1}+x_{2}, y_{1}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle+\underbrace{}_{=0 \text { os } y_{1} \in R(T), x_{2} \in N(T)=R(T)^{\perp} \text {. }{ }^{\left\langle x_{2}, y_{1}\right\rangle}=\left\langle x_{1}, y_{1}\right\rangle}$
And $\langle T(x), y\rangle=\left\langle x_{1}, y_{1}+y_{2}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle+\underbrace{\left\langle x_{1}, y_{2}\right\rangle}_{\lambda_{0}}=\left\langle x_{1}, y_{1}\right\rangle$.
So $\langle x, T(y)\rangle=\langle T(x), y\rangle$ for all $x, y \in V$, thus $T^{*}$ exists and $T=T^{*}$.
$\Leftarrow$ Suppose $T^{2}=T=T^{*}$. Then $T$ is a projection by $H / W$, and we must show $R(T)=N(T)^{\perp}$ and $R(T)^{\perp}=N(T)$.
Let $x \in R(T)$ and $y \in N(T)$. Then $x=T(x)=T^{*}(x)$, so
$\langle x, y\rangle=\left\langle T^{*}(x), y\right\rangle=\langle x, T(y)\rangle=\langle x, 0\rangle=0 \Rightarrow x \in N(T)^{\perp}$. So $R(T) \subseteq N(T)^{\perp}$.
Let $y \in N(T)^{\perp}$. Then
$\|y-T(y)\|^{2 d o t}\langle y-T(y), y-T(y)\rangle=\langle y, y-T(y)\rangle-\langle T(y), y-T(y)\rangle$.
We have $T(y-T(y))=T(y)-T_{\text {ass }}^{2}(y)=T(y)-T(y)=0$, so $y-T(y) \in N(T)$, hence $\langle y, y-T(y)\rangle=0$.
Also $T^{*}(y-T(y))=T *(y)-T^{*} T(y)=T *(y)-T^{*}(y)=0$, hence
$\langle T(y), y-T(y)\rangle=\left\langle y, T^{*}(y-T(y))\right\rangle=\langle y, \theta\rangle=0$.
Combining, $\|y-T(y)\|^{2}=0$, hence $y=T(y) \in R(T)$. So $N(T)^{\perp} \subseteq R(T)$, so $R(T)=N(T)^{\perp}$.
Then $R(T)^{\perp}=N(T)^{\perp \perp} \geq N(T)$ by $H / W$.
Supp. $x \in R(T)^{\perp}$. For any $y \in V$, we have $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle=\langle x, T(y)\rangle=0$.
So $T(x)=0$, thus $x \in N(T)$.
Hence $R(T)^{\perp}=N(T)$.
prem 'L Lot $V$ be an I.P.S., $\operatorname{dim}(V)<\infty$, and $W$ is a subspace of $V$.
Let $T$ be the or thoyonal projection of $V$ on $W$.
let $\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthonormal fasis for $W$, and extend it to an orthonormal has is $\left\{v_{1}, \ldots, v_{k}, v_{k+1} \ldots, v_{n}\right\}$ for $W$. Then $[T] \beta$ is of the form
$\left(\begin{array}{ll}I_{k} & O_{1} \\ O_{2} & O_{3}\end{array}\right)$ with $O_{1}, O_{2}, O_{3}$ zero matrices.
2) It $U$ is any projection on $W$, we may choose a basis $\gamma$ for $V$ s.t. $[U]_{\gamma}$ has the form
above, but $\gamma$ is not necessaring orthonormal.

Than 6.25 (The Spectral Theorem)
Supp. $T \in L(V), V$ an I.P.S. over $F, \operatorname{dim}(V)<\infty$.
Let $\lambda_{1}, \ldots, \lambda_{k} \in F$ be the distinct e.val's of $T$.
Assume $T$ is normal if $F=\mathbb{C}$ or self-adjoint if $F=\mathbb{R}$.
For each $i, 1 \leq i \leq k$, let $W_{i}=E_{\lambda_{i}}$ be the e. space of $T$ corresponding do $d_{i}$ Let $T_{i}$ be the orthogonal projection of $V$ on $W_{i}$.
Then the following holds:
a) $V=W_{1} \oplus \ldots \oplus W_{k}$.
b) Let $W_{i}^{\prime}=\underset{j \neq i}{\oplus} W_{j}$. Then $W_{i}^{\perp}=W_{i}^{\prime}$.
c) $T_{i} T_{j}=\delta_{i j} T_{i}{ }^{j \neq i}$ for $1 \leq i, j \leqslant \alpha$.
d) $I=T_{1}+\ldots+T_{k} \quad-$ The resolution of the identity operator.
e) $T=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$. - the spectral decomposition of $T$.

The set $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ is called the spectrum of $T$.
Proof
a) By $T_{\mathrm{m}} 6.16$ if $F=\mathbb{C}$ and $T h m 6.17$ if $F=\mathbb{R}$, $T$ is diag. Hence $V=W_{1} \oplus \ldots \oplus W_{k}$ by $T \mathrm{hm} \mathrm{5.11}$.
b) If $x \in W$; and $y \in W$; for some $i \neq j$, then $\langle x, y\rangle=0$ (by The 6.15(d)).

Hence $w_{i}^{\prime} \leq w_{i}^{+}$.
By (a) we have $\operatorname{dim}\left(W_{i}^{\prime}\right)=\sum_{j \neq i} \operatorname{dim}\left(W_{j}\right)=\operatorname{dim}(V)-\operatorname{dim}\left(W_{i}\right)$.
On the other hand, $\operatorname{dim}\left(W_{i}^{+}\right)=\operatorname{dim}(V)-\operatorname{dim}\left(W_{i}\right)$ by Thu 6.7(c). Hence $\operatorname{dim}\left(w_{i}^{\prime}\right)=\operatorname{dim}\left(w_{i}^{\perp}\right)$, so $w_{i}^{\prime}=w_{i}^{\perp}$.
c) H/W 6 .
d) As $T_{i}$ is the orthogonal projection of $V$ on $W_{i}$, from (b) we have:

$$
N\left(T_{i}\right)=R\left(T_{i}\right)^{\perp}=W_{i}^{\perp}=w_{i}
$$

By a), every $x \in V$ can be written as
$x=x_{1}+\ldots+x_{k}$ for some $x_{i} \in W_{i}$
Then $T_{i}(x)=T_{i}\left(x_{1}\right)+\ldots+T_{i}\left(x_{i}\right)+\ldots+T_{i}\left(x_{k}\right)=T_{i}\left(x_{i}\right)$ since $\sum_{i \neq j} x_{j} \in W_{i}^{\prime}=N\left(T_{i}\right)$, so $T\left(\sum_{i \neq j} x_{j}\right)=0$.

So $x=T_{1}(x)+\ldots+T_{k}(x)$ for $a l l$ l $x \in V$, so $I=T_{1}+\ldots+T_{k}$.
e) For any $x \in V$ we have $x_{1} x_{1}+\ldots+x_{k}$ for some $x_{i} \in W_{i}$. Then

$$
\begin{aligned}
& T(x)=T\left(x_{1}\right)+\ldots+T\left(x_{k}\right)=\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k} \\
= & \\
=\lambda_{1} T_{1}(x)+\ldots+\lambda_{k} T_{k}(x) & \\
= & \left(\lambda_{1} T_{1}+\ldots+\omega_{k} T_{k}\right)(x) .
\end{aligned}
$$

Rem Let $\beta$ be the union of orthonormal bases of $W_{i}$ 's, let $m_{i}=\operatorname{dim}\left(W_{i}\right)$.
Then $[T]_{\beta}$ has the form


- a diagonal matrix whose entries on the diagonal are the e.val's $\lambda_{i}$, each repeated $m_{i}$ times.

Lemmal $I_{f} \lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$ is the spectral decomposition of $T$, then $g(T)=g\left(\lambda_{1}\right) T_{1}+\cdots+g\left(\lambda_{k}\right) T_{k}$ for any polynomial $g$. Proof H/W 6 .

We obtain several corollaries.
Assume that $T \in L(V), V$ is an I.P.S. over a field $F$, $\operatorname{dim}(V)<\infty$.
Cor $1 I_{f} F=\mathbb{C}$, then $T$ is normal $\Leftrightarrow T^{*}=g(T)$ for some poly. $g(t)$ over $F$. Proof $\Rightarrow$ Supp. $T$ is normal.
let $T=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$ - spectral decomp. of $T$, by $T h m 6.25$.
Then $T^{*}=\left(\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}\right)^{*}=\bar{\lambda}_{1} T_{1}+\ldots+\bar{\lambda}_{k} T_{k}$ - using $T h m 6,11$, and $T_{i}=T_{i}^{*}$ by The 6.24 .
(Font (Lagrange Interpolation) For any field $F$ and any scalars $c_{0}, \ldots, c_{n} \in F$ with $c_{i} \neq c_{j}$ for $i \neq j$, and any scalars $b_{0}, \ldots, b_{n} \in F$ there exists a unique poly $g(t) \in P_{n}(F)$ s.t. $g\left(c_{i}\right)=b_{i}$ for all $i=0, \ldots, n$.

Using this fact, let $g$ be s.t. $g\left(\lambda_{i}\right)=\bar{\lambda}_{i} \forall i$ (recall that $\lambda_{i}$ are distinct e.val's). Then $g(T)=g\left(\lambda_{1}\right) T_{1}+\ldots+g\left(\lambda_{k}\right) T_{k}=\bar{\lambda}_{1} T_{1}+\ldots+\bar{\lambda}_{k} T_{k}=T^{*}$ by the calculation above. by Lemma l
$\Leftrightarrow$ Assume $T^{*}=g(T)$ for some poly $g^{\prime \prime}$. Then, using linearity of $T$,

$$
\begin{aligned}
& T T^{*}=T\left(a_{0}+a_{1} T+\ldots+a_{n} T^{n}\right)=a_{0} T+a_{1} T^{2}+\ldots+a_{n} T^{n+1}=\left(a_{0}+a_{1} T+\ldots+a_{n} T^{n}\right) T=T^{*} T \text {, } \\
& \text { so } T \text { is normal. }
\end{aligned}
$$

Cor $2 I_{f} F=\mathbb{C}$, then $T$ is unitary $\Leftrightarrow T$ is normal and $A \mid=1$ for every e.val. 1 of $T$. Proof
$\Rightarrow$ 'f $T$ is unitary, then $T$ is normal and every e.val of 7 has abs. value $/$ by for 2 of Than 6.18.
$\Leftrightarrow$ let $T=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$ be the spectral decomp. of $T$.
If $|\lambda|=1$ for every e.val. $\lambda$ of $T$, then by Spectral Theorem (c):

$$
\begin{aligned}
& T T^{*}=\left(\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}\right)\left(\bar{I}_{1} T_{1}+\ldots+\bar{\lambda}_{k} T_{k}\right) \\
& =\left|\lambda_{1}\right|^{2} T_{1}+\ldots+\left|\lambda_{k}\right|^{2} T_{k} \\
& =T_{1}+\ldots+T_{k} \\
& =I
\end{aligned}
$$

Hence $T$ is unitary.

- as in cor 1
- as $T_{i} T_{j}=\delta_{i j} T_{i}$ for $1 \leq i, j \leq \&$ by $T h m 6.25$
- as $\left|\lambda_{i}\right|=1$ for all $i$ by assumpt.
- by The $6.25(\mathrm{~d})$.

Cor 3 If $F=\mathbb{C}$ and $T$ is normal, then
$T$ is self-adjoint $\Leftrightarrow$ every e.val. of $T$ is real.
Proof
\& Let $T=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$ be the spectral decamp. of $T$.
supp. every e.val. of $T$ is real. Then

$$
T^{*}=\bar{\lambda}_{1} T_{1}+\ldots+\bar{\lambda}_{k} T_{k}=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}=T .
$$

$\Rightarrow$ Proved in the lemma before The 6.17.
Cor 4 Let $T$ be as in the spectral thu, with spectral decomp. $T=\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$.
Then each $T_{j}$ is a polynomial in $T$.
Proof
By Lagrange Interpolation, for each $1 \leqslant j \leqslant k$, there exists a poly. gi s.t. $g_{j}\left(\lambda_{i}\right)=\delta_{i j}$ for all $1 \leq i \leq k$.
Then:

$$
g_{j}(T)=g_{j}\left(\lambda_{1}\right) T_{1}+\ldots+g_{j}\left(\lambda_{k}\right) T_{k}=\delta_{1 j} T_{1}+\ldots+\delta_{k j} T_{k}=T_{j} .
$$

