Or thogonal projections and the spectral theorem

Dep 1) We say that $T \in L(V)$ is the projection on W_1 along W_2 , where W_1, W_2 are subspores of V s.t. $V = W_1 \oplus W_2$, if whenever $x = x_1 + x_2$, with $x_1 \in W_1$, then $T(x) = x_1$. 2) By a H/W exercise, we know that then $R(T) = W_1$ and $N(T) = W_2$. 3) We say that $T \in L(V)$ is a projection if there exist W_1 and W_2 satisfying the definition above for T. 4) By H/W, T is a projection if and only if $T = T^2$.

Because V = W, $\mathcal{D}W_2 = W$, $\mathcal{D}W_3$ does not imply that $W_2 = W_3$, we see that W, alone does not determine T uniquely. But it does for or theyonal projections, as defined below. Net Let V be an I.P.S., and let $T \in \mathcal{L}(V)$ be a projection. We say that T is an orthogonal projection if $\mathcal{R}(T)^{\perp} = \mathcal{N}(T)$ and $\mathcal{N}(T)^{\perp} = \mathcal{R}(T)$.

Rem From 115A, we know that if V is finite dimensional and W is a subspace of V, then $(W^{\perp})^{\perp} = W$. Hence each of the two conditions in this definition already implies the other one: $(R(T)^{\perp} = N(T))$, then $R(T) = R(T)^{\perp \perp} = N(T)^{\perp}$, and vice versa.

Rem This is not true if dim $(V) = \infty$. Consider the space $V \in \mathbb{C}^2$, i.e. $V = \{(a_i)_{i \in \mathbb{N}} : (a_i)\}$ is an infinite sequence of real numbers and $\sum_{i \in \mathbb{N}} a_i^2 \leq \infty$. It is a R.I.P.S. with the following operations: $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = (a_i + b_i)_{i \in \mathbb{N}} \quad \forall \ (a_i), (b_i) \in \mathbb{C}^2, \ C \in \mathbb{R}$ $c \cdot (a_i)_{i \in \mathbb{N}} = (C \cdot a_i)_{i \in \mathbb{N}} \quad =$ $(a_i)_{i \in \mathbb{N}} = (C \cdot a_i)_{i \in \mathbb{N}} \quad =$ $(a_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $(a_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} + (b_i)_{i \in \mathbb{N}} = \sum_{i = 1}^{n} a_i b_i$. $Note that dim(V) = \infty$. Consider the subspace $W = \{(a_i) \in \mathbb{C}^2: -i_j + i_j + a_i = 0 \text{ for all } i > j_j^2$. Then we have: $W^{\perp} = \{a_i^2 = V$. $W^{\perp} = \{a_i^2 = V$. But $W \neq V$ (e.g. the sequence $(\frac{1}{2^i})_{i \in \mathbb{N}} \in V$ as $\sum_{i = 1}^{n} \sum_{i = 1}^{n} (a_i)_{i \in \mathbb{N}} \notin W$ as $\frac{1}{2^i} \neq 0$. But $W \neq V$ (e.g. the sequence $(\frac{1}{2^i})_{i \in \mathbb{N}} \in V$ as $\sum_{i = 1}^{n} \sum_{i = 1}^{n} (a_i)_{i \in \mathbb{N}} \notin W$ as $\frac{1}{2^i} \neq 0$. So $W \neq W^{\perp \perp}$.

Let W be a subspace of V, dim(W) $\angle \infty$. By Thm 6.6, every $y \in V$ can be vritten as: $y = ut^2$ for unique $u \in W$ and $2 \in W^+$. Derine the map $T: V \rightarrow V$ by T(y) = u. We see from definition above that T is an orthogonal projection on W. Moreover, there exists exactly one orthogonal projection on W: $it T_1 u$ are orthogonal projections on W, then R(T) = W = R(U); hence $N(T) = R(T)^+ = R(U)^+ = N(U)$; then for any $y \in V$ we have y = u + 2 for unique $u \in R(T) = R(u)$ and $2 \notin N(T) = N(U)$. By def. of projection, T(y) = u = U(y). Def We call T the orthogonal projection of V on W. $it V = R^2$, W = Span f(y); bet U_T the sin the picture. Then T is an orthogonal projection, but U is a different projection on W. $Node: v - T(v) \in W^+$, $v - U(v) \notin W^+$.

We have an dysbraic description of relegonal projections:
Thus 620 left V be an I.P.S and
$$T \in \mathcal{L}(V)$$
. Then:
T is an orthogonal projection (an same subspace W) $Z \gg T$ has an adjoint T^* and $T^* = T = T^*$.
Projection (an same subspace W) $Z \gg T$ has an adjoint T^* and $T^* = T = T^*$.
Projection (an analysis subspace W) $Z \gg T$ has an adjoint T^* and $T^* = T = T^*$.
Projection ($V = 0$ or $V = T^*$) $T = T^*$.
As $T^* = T$ because T is a projection, ordy held to show that T^* earsts and $T = T^*$.
By def , $V = R(T) \oplus N(T)$ and $R(T)^{\perp} = N(T)$.
Let $x, y \in V$, then $X = x_1 + x_2$ and $y = y_1 y_2$. for some $x_{i,g} \in R(T)$, $x_{2,g} \in N(T)$. Then:
 $< x_1 T(y) \ge < (X_{1}, X_{2}, g_{1}) \ge < (X_{1}, y_{2}) \ge < (X_{1}, g_{1}) \ge (X_{1}, g_{2}) \ge (X_{1}, g_{1}) \ge (X_{1}, g_{2}) \ge (X_{1}, g_{2}) \ge (X_{1}, g_{1}) \ge (X_{1}, g_{2}) \ge (X_{1}, g_{1}) \ge (X_{1}, g_{2}) = (X_{1}, g_{2}) = (X_{1}, g_{2}) = (X_{1}, g_{2}) = (X_{1}, g_{2}) \ge (X_{1}, g_{2}) = (X_{1},$

Let T be the orthogonal projection of V on W. Let T be the orthogonal projection of V on W. Let $\{v_1, ..., v_k\}$ be an orthonormal tasis for W, and extend it to an orthonormal tasis $\{v_1, ..., v_{k,1}, v_{k+1}, ..., v_{n}\}$ for W. Then $[T]_F$ is of the form $\begin{pmatrix} I_k & 0_1 \\ 0_2 & 0_3 \end{pmatrix}$ with $0_1, 0_2, 0_3$ zero matrices. 2) If U is any projection on W, we may choose a basis & for V s.t. [U]_F has the form above, but I is not necessarily orthonormal.

Thun 6.25 (The Spectral Theorem) Supp. $T \in L(V)$, V an I.P.S. over F, $\dim(V) < \infty$. let $\lambda_1, ..., \lambda_k \in F$ be the disfinct c.val's of T. Assume T is hormal if F = C or sdf-adjoint if F = R. For each i, $1 \le i \le k$, let $W_i = E\lambda_i$ be the c.space of T arresponding to λ_i . Let T_i be the orthogonal projection of V on W_i . Then the following holds:

a)
$$V = W$$
, Θ , Θ , W_{1} , Then $W_{1}^{\perp} = W_{1}^{\perp}$.
c) $T:T_{2} = T_{1}^{\perp} \cdots T_{k}^{\perp} = T_{k}^{\perp} T_{k}^{\perp}$
(e) $T = \lambda_{1}T_{k}^{\perp} \cdots T_{k}^{\perp} = T_{k}^{\perp} = T_{k}^{\perp} = T_{k}^{\perp}$
(for $V = \lambda_{1}T_{k}^{\perp} \cdots T_{k}^{\perp} = T_{k}^{\perp$