The geometry of orthogonal operators
Def Let $T \in L(V), \quad V$ a R.I.P.S., $\operatorname{dim}(V)<\infty$.

1) T is a rotation if T is the identity on V, or it there exists a two-dimensional subspace W or V,
an orthonormal basis $\beta=\left\{x_{1}, x_{2}\right\}$ for W, and a real number θ s.t.
$T\left(x_{1}\right)=\cos \theta \cdot x_{1}+\sin \theta \cdot x_{2}$
$T\left(x_{2}\right)=(-\sin \theta) x_{1}+\cos \theta \cdot x_{2}$,
and $T(y)=y$ for all $y^{\prime} \in W^{+}$.
Then we say that T is a rotation of W about W^{\perp}, and W^{+}is called the axis of rotation.
2) T is a reflection if there exists a one-dimensional subspace W of V s.t.
$T(x)=-x$ for all $x \in W$ and
$T(y)=y$ for all $y \in W^{+}$.
Then T is called a reflection of V about W^{+}.
Example
3) Every rotation of $V=\mathbb{R}^{2}$ as discussed previously is a rotation of $W=V=\mathbb{R}^{2}$ about the subspace $W^{\perp}=\{0\}$.
4) Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(a, b)=(-a, b)$, let $W=\operatorname{span}(\{e\}$,$) .$

Then $T(x)=-x$ for all $x \in W$, and $T(y)=y$ for all $y \in W^{\perp}$.
Thus T is a reflection of \mathbb{R}^{2} about $W^{\perp}=\operatorname{Span}\left(\left\{e_{2}\right\}\right)$, the y-axis.
(Rem 1) If $T \in L(V)$ is a rotation or reflection, then T is orthogonal.
2) Moreover, if each $T_{i} \in h(V)$ is either a rotation or a reflection, then $T=T_{1} \ldots T_{k} \in L(V)$ is or thogonal. Proof See HIW 6.

Our next aim is to prove the converse to this: every orthogonal operator on a fin. dim. R.I.P.S. is a composition of rotations and reflections.

Example ($\operatorname{dim}(V)=1)$
Let $T \in L(V), \quad V$ a R.I.P.S., $\operatorname{dim}(V)=1$.
Let $x \neq 0$ any vector in V.
Then $V=S_{\text {pan }}(\{v\})$, so $T(x)=\lambda x$ for some $\lambda \in \mathbb{R}$.
since T is or thogonal and λ is an e.val. of T, we must have $\lambda= \pm 1$. (as $\|x\|=\|T(x)\|=|\lambda|\|x\|$, so $\lambda \mid=1$).
If $\lambda=1$, then T is the identity on V, hence T is a rotation.
If $x=-1$, then $T(x)=-x \quad \forall x \in V$ by linearity of T. So T is a reflection of V about $V^{\perp}=\{0\}$.
So T is either a rotation or a reflection.
In the first case, $\operatorname{det}(T)=1$, in the second $\operatorname{det}(T)=-1$.
Next we consider the case $\operatorname{dim}(V)=2$.
First we understand the situation for $V=\mathbb{R}^{2}$.
Thun 6.23 Let $T \in L\left(\mathbb{R}^{2}\right)$ be or thojonal.
Let β te the standard (orthonormal) basis for \mathbb{R}^{2}, and let $A=[T]_{\beta}$.
Then exactly one of the following is satisfied:
a) T is a rotation, and $\operatorname{det}(A)=1$.
b) T is a reflection about a line through the origin, and $\operatorname{det}(A)=-1$.

Proof As T is orthogonal, $T(\beta)=\left\{T\left(e_{1}\right), T\left(e_{2}\right)\right\}$ is an orthonormal basis for \mathbb{R}^{2} by $T \operatorname{mm} 6.18(c)$.
Since $T\left(e_{1}\right)$ is a unit vector, there is a unique angle $\theta, 0 \leq \theta \leq 2 \pi$, s.t. $T\left(e_{1}\right)=(\cos \theta, \sin \theta)$
Since $T\left(e_{2}\right)$ is a unit vector and or thogonal to $T\left(e_{1}\right)$, there are only two possibilities for it:

Either 1) $T\left(e_{2}\right)=(-\sin \theta, \cos \theta)$ or

1) If $T\left(e_{2}\right)=(-\sin \theta, \cos \theta)$, then $\quad A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$.

From the earlier example we see that then θ is the rotation of \mathbb{R}^{2} by the angle θ.
And $\operatorname{det}(A)=\cos ^{2} \theta+\sin ^{2} \theta=1$.
2) supp. $T\left(e_{2}\right)=(\sin \theta,-\cos \theta)$. Then $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)$.

Then T is the reflection of \mathbb{R}^{2} about a line L through the origin, with slope $\frac{\theta}{2}$.
(Check that the dey. of reflection is satisfied!). And $\operatorname{det}(A)=-\cos ^{2} \theta-\sin ^{2} \theta=-1$.
Next we need to generalize this from \mathbb{R}^{2} to an arbitrary R.I.P.S. of dim 2.
Standard representation of I.P.S.
First recall standart presentation of vector spaces from IISA.
Dy let βk an ordered basis for an n-dimensional vector spae V over the field F.
The standard representation of V w.r.t. β is the function
$\varphi_{\beta}: V \rightarrow F^{n}$ defined by $\varphi_{\beta}(x)=[x]_{\beta}$ for all $x \in V$.
Thun 2.21 For any finite-dimensional v.s. V with ordered basis β, φ_{β} is an isomorphism.
Moreover, for any $V, W, \operatorname{dim}(V)=n, \operatorname{dim}(W)=m$, and $T \in L(V, W)$, it β, γ are ord. fasis for V, W, respectively, then the following diagram is commutative:

We uprade this representation to respect inner products as well.
Thu let V be an I.P.S. over a field F and $\operatorname{dim}(V)=n$.
Let β be an orthonormal basis for V. Then
$\forall x, y \in V$ we have $\left.\langle x, y\rangle_{V}=\left\langle\varphi_{\beta}(x), \varphi_{\beta} y\right)\right\rangle_{F^{n}}$,
where \langle,\rangle_{V} denotes the inner product on V and $\langle,\rangle_{F^{n}}$ denotes the standard inner product
Proof let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$. on F^{n}.
As β_{n} is or thonormal, by Than 6.5 we have for any $x, y \in V$:
$x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}, \quad y=\sum_{i=1}^{n}\left\langle y, v_{j}\right\rangle v_{j}$.
Then, by basic properties of inner products and or thogonality of β_{n} we hove:

But $\varphi_{\beta}(x)=[x]_{\beta}=\left(\begin{array}{c}\left\langle x, v_{1}\right\rangle \\ \vdots \\ \left\langle x, v_{n}\right\rangle\end{array}\right), \varphi_{\beta}(y)=[y]_{\beta}=\left(\begin{array}{c}\left\langle y, v_{1}\right\rangle \\ \vdots \\ \left\langle y, v_{n}\right\rangle\end{array}\right)$, so is equal to $\left\langle\varphi_{\beta}(x), \varphi_{\beta}(y\rangle_{F_{n}}\right.$ by
the definition of the standard inner product on F^{n}.
This shows that when β is an orthogonal basis, then φ_{β} preserves inner product as well. Using this, we can reduce questions about general I.P.S. to the standard ones F^{n}.
Thu 6.45 Let V be a R.I.P.S. with $\operatorname{dim}(V)=2$.
let $T \in L(V)$ be orthogonal. Then:

1) either T is a rotation, and $\operatorname{det}(T)=1$, or
2) T is a reflection, and $\operatorname{det}(T)=-1$.

Proof.

Let β be an orthonormal baas is for V.
Let $\varphi_{\beta}: V \rightarrow \mathbb{R}^{2}$ be the standard representation.
Use the previous theovern and Thu 6.23 to finish the proof (H/W 7).
.
for Let V be a 2 -dimensional R.I.P.S. The composite of a r election and a rotation on V is a reflection on V.
Pf $I_{f} T_{1}$ is a reflection on V and T_{2} is a rotation on V, then by Thun 6.45:
$\operatorname{det}\left(T_{1}\right)=1, \quad \operatorname{det}\left(T_{2}\right)=-1$.
let $T=T_{2} T_{1}$ be the composite. $A_{s} T_{2}$ and T_{1} are orthogonal operators, so is T.
And $\operatorname{det}(T)=\operatorname{det}\left(T_{2}\right) \cdot \operatorname{det}\left(T_{1}\right)=-1$.
By T hm $6.45, T$ is a reflection.
The proof for $T_{1} T_{2}$ is analogous.
Next we study or thogonal operators on spaces of higher dimension.
Lemma let V be a real v.s., $V \neq\{0\}$ and $\operatorname{dim}(V)<\infty$.
Let $T \in L(V)$. Then there exists a T-inv. subspace W of V s.t. $1 \leq \operatorname{dim}(W) \leq 2$.
Proof
Fix an orlaved basis $\beta=\left\{y_{1}, \ldots, y_{n}\right\}$ for V
Let $A=[T]_{\beta}$.
Let $\varphi_{\beta}: V \rightarrow \mathbb{R}^{n}$ be the standard representation, $\varphi_{\beta}\left(y_{i}\right)=e_{i}$ tor $i=1, \ldots, n$.
Then ${Y_{\beta}}_{\beta}$ is an iso. and the diagram

In vier of this, it is enough to show that there exists an L_{A}-invariant subspme Z of \mathbb{R}^{n} st. $1 \leq \operatorname{dim}(Z) \leq 2$ (as then, taking $W=\varphi_{p}^{-1}(Z), W$ is a subspace of V with $\operatorname{dim}(W)=\operatorname{dim}(Z)$ as
φ_{s} is an iso., and W is T-invariant as:
$\forall x \in W, \varphi_{\beta}(x) \in Z$, hence $L_{A} \varphi_{B}(x) \in Z$ as Z is L_{A}-inv, hence $\varphi_{B} T(x) \in Z$ by the diagram,
that is $\varphi_{\beta}(T(x)) \in Z$, so $T(x) \in \varphi_{\beta}^{-1}(z)=W$.)
We have $A \in M_{n \times n}(\mathbb{R}) \leq M_{n \times n}(\mathbb{C})$. Hence we can de fine $U \in L\left(\mathbb{C}^{n}\right)$ by $U(v)=A v$ for all $v \in \mathbb{C}^{n}$.
By the Fundamental Thun of Algebra, erg poly. over \mathbb{C} has a root in \mathbb{C}.
In particular, the char. poly. $q 4$ has a rood in \mathbb{C}, hence 4 has an e.val. $\lambda \in \mathbb{C}$ (by The 5.2)
Let $x \in \mathbb{C}^{n}$ be on e.vect. of 4 corresp. to λ.
We can write $\lambda=\lambda_{1}+i \lambda_{2}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$, and
$x=\left(\begin{array}{c}a_{1}+i b_{1} \\ \vdots \\ a_{n}+i b_{n}\end{array}\right)$ for some $a_{i}, b_{i} \in \mathbb{R}$. Let $x_{1}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right), x_{2}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right)$. Then $x_{1}, x_{2} \in \mathbb{R}^{n} \leqslant \mathbb{C}^{n}$,
and $x=x_{1}+i x_{2}$ (calculated in \mathbb{C}^{n}, where $i \in \mathbb{C}$ is a scalar).
At least one of $x_{1}, x_{2} \neq 0$ since $x \neq 0$ as an e.vect. Heme, working in the v.s. \mathbb{C}^{n},
$U(x)=\lambda x=\left(\lambda_{1}+i \lambda_{2}\right)\left(x_{1}+i x_{2}\right)=\left(\lambda_{1} x_{1}-\lambda_{2} x_{2}\right)+i\left(\lambda_{1} x_{2}+\lambda_{2} x_{1}\right)$.
But also $u(x)=A\left(x_{1}+i x_{2}\right)=A x_{1}+i A x_{2}$.
Comparing the real and imaginary parts of these two expressions of $U(x)$ we get:
$A x_{1}=\lambda_{1} x_{1}-\lambda_{2} x_{2}$ and $A x_{2}=\lambda_{1} x_{2}+\lambda_{2} x_{1}$. (*)
Finally take $z=\operatorname{span}\left(\left\{x_{1}, x_{2}\right\}\right)$, working in the space \mathbb{R}^{n} !
Since $x_{1} \neq 0$ or $x_{2} \neq 0, z$ is a non-zero subspace of $\mathbb{R}^{n \prime}$, so $1 \leq \operatorname{dim}(z) \leq 2$, and
z is L_{A}-inv: given $y \in Z$, by dep. of Z we have $y=a_{1} x_{1}+a_{2} x_{2}$ for some $a_{1}, a_{2} \in \mathbb{R}$, so by (x) $L_{A}(y)=a_{1} L_{A}\left(x_{1}\right)+a_{2} L_{A}\left(x_{2}\right)=a_{1}\left(\lambda_{1} x_{1}-\lambda_{2} x_{2}\right)+a_{2}\left(\lambda_{1} x_{2}+\lambda_{2} x_{1}\right)=\underbrace{\left(a_{1} \lambda_{1}+a_{2} \lambda_{2}\right)}_{\epsilon \mathbb{R}} x_{1}+(\underbrace{\left.a_{2} \lambda_{1}-a_{1} \lambda_{2}\right) x_{2}}_{\epsilon \mathbb{R}} \in \operatorname{Span}\left(\left\{x_{1} x_{2}\right\}\right)=Z$.

The 6.46 let V be a R.I.P.S., $V \neq\{0\}$ and $\operatorname{dim}(V)<\infty$. Let $T \in L(V)$ be orthogonal.
Then there exist pairwise-orthogonal, T-inv. subspaces W_{1}, \ldots, W_{m} of V s.t:
a) $1 \leq \operatorname{dim}\left(w_{i}\right) \leq 2$ for $i=1, \ldots, m$.
b) $V=w_{1} \oplus \ldots \oplus w_{m}$.

Proof
By induction on $\operatorname{dim}(V)$.
It $\operatorname{dim}(V)=1$-obvious taking $W_{1}=V$.
So assume Thu holds whenever $\operatorname{dim}(V)<n$ for some fixed integer $n>1$.
Supp. $\operatorname{dim}(V)=n$
By the lemma, there exists a T-inv. subspace W_{1} of V s.t. $1 \leq \operatorname{dim}\left(W_{1}\right) \leq 2$.
If $w_{1}=V$ - done.
Otherwise $W_{1}^{\perp} \neq\{0\} \quad$ as $\left.\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{+}\right)\right)$.
Then W_{1}^{\perp} is T-inv. and $T_{w_{1}^{+}}$is orthogonal (see $\left.H / \begin{array}{l}W \\ 7\end{array}\right)$.
Since $\operatorname{dim}\left(W_{1}^{+}\right)=\operatorname{dim}(V)^{1}-\operatorname{dim}(W)<n$, we may apply the induction hypothesis to $T_{W_{1}^{+}}$, so:
there exist pairwise orthogonal T-invariant subspaces w_{2}, \ldots, w_{m} of W_{1}^{t} sit. $1 \leq \operatorname{dim}\left(w_{i}\right) \leq 2$ for $i=2, \ldots, n$
and $w_{1}^{\perp}=w_{2} \oplus \ldots \oplus w_{m}$.
Then $w_{1}, w_{2}, \ldots, w_{m}$ are pairwise or thogonal and
$V=w_{1} \oplus w_{1}^{\perp}=w_{1} \oplus \ldots \oplus w_{m}$.

$$
\text { Then } 6.7
$$

We collect move information about this decomposition.
Thu 6.47' let $T, V, W_{1}, \ldots, W_{m}$ be as in Thu 6.46
a) $T_{w_{i}}$ is either a rotation or a reflection, for each $i=1, \ldots, m$.
b) The number of w_{i} 's for which T_{i} is a reflection is even iff $\operatorname{det}(T)=1$ and odd if $\operatorname{det}(T)=-1$.
c) It is always possible to decompose V as in The 6.46 so that the number of W_{i} for which $T_{w_{i}}$ is a
reflection is 0 or 1 , according to whether $\operatorname{det}(T)=1$ or $\operatorname{det}(T)=-1$.
Furthermore, it $T_{w_{i}}$ is a reflection, then $\operatorname{dim}\left(w_{i}\right)=1$.
Proof
a) Each $T_{w_{i}}$ is orthogonal (by $H(W 7)$ and $1 \leqslant \operatorname{dim}\left(W_{i}\right) \leqslant 2$.

Then $T_{W_{i}}$ is a reflection or rotation by Example 1 it $\operatorname{dim}\left(W_{i}\right)=1$, or by $\operatorname{Thm} 6.45$ if $\operatorname{dim}\left(W_{i}\right)=2$.
b) Let r denote the number of W_{i}^{\prime} 's for which $T_{w_{i}}$ is a reflection.

Then, by $H / W 7, \operatorname{det}(T)=\operatorname{det}\left(T_{W_{1}}\right) \cdot \cdots \cdot \operatorname{det}\left(T_{W_{m}}\right)=(-1)^{r}-$ this gives (6).
c) Let $E=\{x \in V: T(x)=-x\}$.

Then E is a T-inv. subspace of V.
If $W=E^{\perp}$, then W is T-inv. (by $\left.H / W 7\right)$.
Applying $T_{m m} 6.46$ to $T_{W} \in L(W)$, we obtain pairwise orthogonal T-inv. subspaces W_{1}, \ldots, W_{k} of W
s.t. $W=W_{1} \oplus \ldots \oplus W_{k}$ and $1 \leq \operatorname{dim}\left(w_{i}\right) \leq 2$.
Each $T_{w_{i}}$ is a rotation (it $T_{w_{i}}$ is a reflection, $\exists x \neq 0$ in w_{i} s.t. $T(x)=-x$. But then $x \in W_{i} \cap E \leq$ $\leq E^{\perp} \cap E=\{0\}$, a contradiction).
$I_{t} E=\{0\}$ - (c) follows.
It $E \neq\{0\}$ - Moose an orthonormal las is β tor E containing p vectors, for some $\beta>0$. We can write β as a disjoint union $\beta=\beta_{1} \cup \ldots \cup \beta_{r}$ s.t.:

- each β_{i} contains exactly 2 vectors for $i<r$,
- $\mathrm{\beta r}$ contains 2 vectors in p is even, and 1 vector it p is odd.

For each $i=1, \ldots, r$, let $W_{k+i}=\operatorname{span}\left(\beta_{i}\right)$.
Then w_{1}, \ldots, w_{k+r} are pairwise orthogonal, and as $T(x)=-x$ for all
$V=W \oplus E=W_{1} \oplus \ldots W_{k} \oplus \ldots \oplus W_{k+r} . \quad(*)$

So $T_{w_{k+i}}$ is a rotation, hence $T_{w ;}$ is a rotation for $j<k+r$. $T(x)=-\lambda$
If β_{r} consists of 1 vector, then $\operatorname{dim}\left(W_{k+r}\right)=1$ and $\operatorname{det}\left(T_{w_{k+r}}\right)=\operatorname{det}\left(\left[T_{w_{k+r}}\right]_{k r}\right)=\operatorname{det}(-1)=-1$
Thus $T_{w_{k+r}}$ is a reflection b_{y} Example 1 .
Hence the decomposition (*) satisfies (c).
Finally, we obtain the desired decomposition of a general or thogonal operator.
for let V be a R.I.P.S., $\operatorname{dim}(V)<\infty$ and $T \in L(V)$ is or thogonal.
Then there exist or thogonal orators T_{1}, \ldots, T_{m} on V such that:
a) For each $i, T_{\text {; }}$ is either a reflection or a rotation.
b) For at most one i, T_{i} is a ret lection-
c) $T_{i} T_{j}=T_{j} T_{i}$ for all i, j.
d) $T=T_{1} T_{2} \ldots T_{m}$.
e) $\operatorname{det}(T)=\left\{\begin{array}{cc}1 & \text { it } T_{i} \text { is a rotation for each } i, \\ -1 & \text { otherwise. }\end{array}\right.$

Proof
As in the proof of The 6.47(c), we can write
$V=W_{1} \oplus \ldots \oplus W_{m}$
where $T_{w_{i}}$ is a rotation if $i<m$.
For each $;=1, \ldots, m$, define $T_{i}: V \rightarrow V$ by
$T_{i}\left(x_{1}+\ldots+x_{m}\right)=x_{1}+\ldots+x_{i-1}+T\left(x_{i}\right)+x_{i+1}+\ldots+x_{m}$,
where $x_{j} \in W_{j}$ for all j.
Claim T_{i} is a reflection/ratation on $V \Leftrightarrow T_{w_{i}}$ is a ratation/reflection.
This claim is immediate from definition of replection/rotation, with the subspace in the delination given by w_{i}.
This gives a) and $b)$; (c), (d), (e) - exercise ($H / W 7)$.

