The Jordan Canonical Form

Recall: diagonatizable linear operators have a particularly simple description
such operators have diagonal matrix representation, equivalently there is an ordered basis of e.vect's.
Problem: most operators are not diagonalizable!
Aim: obtain nice matrix representations for more general operators.
We will obtain a general answer for linear operators whose char. poly. splits (if $F=\mathbb{C}$, this applies to all operators!)

Def let $T \in L(V), V$ is a v.s. with $\operatorname{dim}(V)<\infty$.
Assume that β is a basis for V st.

some e.val. λ of T,
such a matrix $A_{\text {; }}$ is called a Jordan block corresponding to λ. So $[T]_{\beta}=A, \oplus \ldots \oplus A_{k}$.
And the matrix $[T]_{\beta}$ is called a Jordan canonical form of T.
And such basis β is a Jordan Canonical basis for T.
Rem Observe that each Jordan block $A_{;}$is "almost" a diagonal matrix, and $[T]_{\beta}$ is diagonal \Leftrightarrow each A; is of the form (λ).

$$
\begin{aligned}
& \text { is a Jordan canonical form of } T \text {. } \\
& \text { Then the char. poly. of } T \text { is } \\
& \operatorname{det}(J-t I)=\operatorname{det}\left(\begin{array}{ccc}
2-t & 1 & 0 \\
0 & 2-t & 1 \\
0 & 0 & 2-t
\end{array}\right) \cdot \operatorname{det}(2-t) \cdot \operatorname{det}\left(\begin{array}{cc}
3-t & 1 \\
0 & 3-t
\end{array}\right) \text {. } \\
& \operatorname{det}\left(\begin{array}{cc}
-t & 1 \\
0 & -t
\end{array}\right)=(t-2)^{4}(t-3)^{2} t^{2} \text {. } \\
& \text { so the multiplicity of each e.val. is The number of times } \\
& \text { it appears on the diagonal of } J \text {. }
\end{aligned}
$$

And $v_{1}, v_{4}, v_{5}, v_{7}$ are the only vectors in β that are eigenvectors of T - they correspond to the columns of T with no "I" above the diagonal.

We will show that every operator whose char. poly. splits admits a Jordan canonical
Ex 2 However, the Jordan canonical form of T is not determined by the char. poly. of T ! form. Let $T^{\prime} \in L\left(\mathbb{C}^{8}\right)$ be s.t. $\left[T^{\prime}\right]_{\beta}=J^{\prime}$, where β is an ordered basis from Ex 1 , and

$$
v_{1}, v_{4} \text { - e.vect's of } T \text { with e.val. } \lambda=2 \text {, so }(T-2 I)^{3}\left(v_{i}\right)=0 \text { for } i=1,2,3,4 \text {. }
$$

Similarly, $\begin{aligned} &(T-3 I)^{2}\left(v_{i}\right)=0 \\ &(T-O I)^{2}\left(v_{i}\right)=0 \text { for } i=5,6 .\end{aligned} \quad$ for $i=7,8$. What happens in general?

Prop. If v lies in a Jordan canonical basis for $T+L(v)$ and its column in $[T]_{\mathcal{B}}$ has diagonal entry λ, then $(T-\lambda I)^{p}(v)=0$ for sufficient thy large $p \in \mathbb{N}$.
Eigenvectors satisfy this with $p=1$.
Proof H/W 8.
This motivates the following definition.
Def let $T \in L(V)$ and $\lambda \in F$.
A vector $x \neq 0$ in V is a generalized e.vect. of T corresp. to λ if $(T-\lambda I)^{p}(x)=0$ for some positive integer p.

Rem It $x \in V$ is a gen.e.vect. of T corresp. to λ, and p is the smallest positive in teger sit. $\left((T-\lambda I)^{p}(x)=0\right.$, then $(T-\lambda I)^{p-1}(x)$ is an e.vect. of T corresp.to λ. So λ is an e.val. of T !

Ex 3 In Ex 1 , each vector in \mathcal{F} is a gen. e.vect. of T.
v_{1}, v_{2}, v_{3} corresp. to the scalar $2, v_{5}$ and v_{6} to $3, v_{7}$ and v_{8} to 0 .
Def Let $T \in L(V)$, Let λ be an e.ral. of T.
The generalized eigenspace of T corresponding to λ is
$K_{\lambda}=\left\{x \in V:(T-\lambda I)^{p}(x)=0\right.$ for some positive integer $\left.p\right\}$.
So K_{λ} consists of 0 and all gen. e.vect's of T corresp. to λ.
Thu 7.1 Let $T \in L(V)$, let $\lambda \in F$ be an e.val. of T. Then:
a) K_{λ} is a T-in r. subspace of V containing E_{λ}.
b) For any $\mu \neq \lambda$ in F, the restriction of $T_{-} \mu I$ to K_{λ} is one-to-one.

Proof a) K_{λ} is a subspace of V.
Clearly $0 \in K_{\lambda}$.
Supp. $x, y \in K_{\lambda}$. Then by def. $\exists p, q \in \mathbb{N}_{>0}$ s.t.

$$
\begin{aligned}
&(T-\lambda I)^{p}(x)=(T-\lambda I)^{q}(y)=0 . \\
&(T-\lambda I)^{p+q}(x+y)=(T-\lambda I)^{p+q}(x)+(T-\lambda I)^{p+q} \\
&=(T-\lambda I)^{q}(0)+(T-\lambda I)^{p}(0) \\
&= 0 \\
&= x+y \in k_{\lambda} .
\end{aligned}
$$

$$
(T-\lambda I)^{p+q}(x+y)=(T-\lambda I)^{p+q}(x)+(T-\lambda I)^{p+q}(y) \quad \text { (as } T \text { lin } \Rightarrow(T-\lambda I)^{p+q} \text { is lin.) }
$$

(by the choice of p and q)
(as $(T-\lambda I)^{q},(T-\lambda I)^{p}$ are forth linear).
Similarly, k_{λ} is closed under scalar multiplication.
k_{λ} is T-in V
Let $x \in K_{\lambda}$.
Let $p \in \mathbb{N}_{>0}$ be such that $(T-\lambda I)^{p}(x)=0$. Then

$$
\begin{aligned}
& (T-\lambda I)^{p} T(x)=T(T-\lambda I)^{p}(x) \\
& =T(0)=0 . \\
& \Rightarrow T(x) \in k_{\lambda} .
\end{aligned}
$$

$$
E_{\lambda} \leq k_{\lambda}
$$

If $x \in E_{\lambda}$, then $(T-\lambda I)^{p}(x)=0$ with $p=1$ by def. of e.spaces.
b) We show that $N\left((T-\mu I)_{k_{\lambda}}\right)=\{0\}$.

Assume $x \in K_{x}$ and $(T-\mu I)(x)=0$.
Towards contradiction, suppose $x \neq 0$.
Let p be the smallest integer >0 sit. $(T-\lambda I)^{p}(x)=0$.
Let $y=(T-\lambda I)^{p-1}(x)$. Then

$$
(T-\lambda I)(y)=(T-\lambda I)^{p}(x)=0 \text {, so } y \in E \lambda \text {. }
$$

Furthermore,

$$
(T-\mu I)(y)=(T-\mu I)(T-\lambda I)^{p-1}(x)=\underset{\substack{\text { linear }}}{(T-\lambda I)^{p-1} \underbrace{(T-\mu I)}_{=0}(x)}=0
$$

So $y \in E_{\mu}$.
But $E_{\lambda} \cap E_{\mu}=\{0\}$ as $\lambda=\mu$, so $y=0$ - contradicting minimality of p. So $x=0 \Rightarrow(T-\mu I)_{k_{\lambda}}$ is one-to-one.

Thu 7.2 Let $T \in L(V)$, $\operatorname{dim}(V)<\infty$, and char. poly of T splits. Supp. λ is an e.val. of T with multiplicity m. Then:
a) $\operatorname{dim}\left(k_{\lambda}\right) \leq m$.
b) $k_{\lambda}=N\left((T-\lambda I)^{m}\right)$.

Proof
a) Let $W=k_{\lambda}$.

Let $h(t)$ be the char. poly of T_{w}.
By Thu 5.21, $h(t)$ divides the char. poly. of T., so $h(t)$ splits.
By The $7.1(b), \lambda$ is the only e.val. of Tw.
Hence $h(t)=(-1)^{d}(t-\lambda)^{d}$, where $d=\operatorname{dim}(W)$, and $d \leq m$.
b) Clearly $N\left((T-\lambda I)^{m}\right) \leq k_{\lambda}$ by dep. of k_{λ}.

Let W and $h(t) b$ as in (a).
Then $h(T w)=T_{0}$ by the Cayley-Hamilton Thu.
so $(T-\lambda I)^{d}(x)=0$ for $a n+\in W$.
since $d \leq m$, we have $K_{\lambda} \subseteq N\left((T-\lambda I)^{m}\right)$.
Tum 7.3 Let $T \in L(V), \operatorname{dim}(V)<\infty$ and the char. poly. of T splits.
let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct e.val's of T.
Then for every $x \in V$ there exist vectors $v_{i} \in k_{\lambda_{i}}, 1 \leq i \leq k$, s.t.

$$
x=v_{1}+\ldots+v_{k} .
$$

Proof.
By induction on the number k of distinct eval's of T.
$k=1$ Let m be the multiplicity of λ_{1}.
Then $\left(\lambda_{1}-t\right)^{m}$ is the char. poly. of T, hence
$\left(\lambda_{1} I-T\right)^{m}=T_{0}$ - by the cagley ~ Hamilton than.
Thus $V=K_{\lambda_{1}}$, and the result follows.
$k>1$, and assume the result holds for $<k$ distinct e.val's.
supp. T has k distinct e.vals.
Let m be the multiplicity of λ_{k}, let $f(t)$ be the char. poly. of T.
Then $f(t)=\left(t-\lambda_{k}\right)^{m} g(t)$ for some poly. $g(t)$ not divisible by $\left(t-\lambda_{k}\right)$.
Let $W=R\left(\left(T-\lambda_{k} I\right)^{m}\right)$.
Then W is T-inv. $\left(x \in W \Leftrightarrow \exists y \in V\right.$ s.T. $\left.\left(T-\lambda_{k} I\right)^{m}(y)=x \Rightarrow T(x)=T\left(T-\lambda_{k} I\right)^{m}(y)=\left(T-\lambda_{k} I\right)^{m} \frac{V}{(T(y)}\right)$, so $\left.T(x) \in R\left(\left(T-\lambda_{k} I\right)^{m}\right)=W\right)$.
Claims $\left(T-\lambda_{k} I\right)^{m}$ maps K_{λ}; onto itself for $i<k$.
Indeed, supp. $i<k$.
$k_{\lambda_{i}}$ is T-invariant $\Rightarrow k_{\lambda_{i}}$ is $\left(T-\lambda_{k} I\right)^{m}$ - invariant, in other words $\left(T-\lambda_{k} I\right)^{m}$ maps $k_{\lambda_{i}}$ into itself.
And $\lambda_{k} \neq \lambda_{i}$, so $\left(T-\lambda_{k} I\right)_{k_{\lambda_{i}}}$ is one-to-one by The 7.1(b), heme onto.
But then $\left(T-\lambda_{k} I\right)_{k_{i}}^{m}$ is also onto.

Claims implies that for $i<k, K_{\lambda_{i}}$ is contained in W. (as $K_{\lambda_{i}}=\left(T-\lambda_{k} I\right)^{m}\left(K_{\lambda_{i}}\right) \subseteq R\left(\left(T-\lambda_{k} I\right)^{m}\right)$. Heme λ_{i} is an e.val. of T_{w} for $i<k$.

Claim $2 \lambda_{k}$ is not an e.val. of T_{W}.
Supp. $T(v)=\lambda_{k} v$ for some $r \in W$.
$v \in W \Leftrightarrow \exists y \in V$ s.t. $v=\left(T-\lambda_{k} I\right)^{m}(y)$. Heme
$0=\left(T-\lambda_{k} I\right)(v)=\left(T-\lambda_{k} I\right)^{m+1}(y)$.
$\Rightarrow y \in K_{\lambda_{k}}$.
By $\operatorname{Thn} \quad 7.2(b) \Rightarrow v=\left(T-\lambda_{k} I\right)^{m}(y)=0$, so v is not an e.val. of T_{w}.
Since every e.val. of T_{W} is also an e.val. of T, we conclude that the distinct e.val's of T_{W} are $\lambda_{1}, \ldots, \lambda_{k-1}$.

Now let $x \in V$.
Then $\left(T-\lambda_{k} I\right)^{m}(x) \in W$ by def. of W.
Let $K_{\lambda_{i}}^{\prime} \leq W$ denote the gen. e. space of T_{W} corresp. to λ_{i}, for $1 \leq i \leq k-1$.
Since T_{w} has $k-1$ distinct e.val's $\lambda_{1}, \ldots, \lambda_{k-1}$, the induction hypothesis applies and gives:
$\exists w_{i} \in K_{\lambda_{i}}^{\prime}, 1 \leq i \leq k-1$ st.

$$
\left(T-\lambda_{k} I\right)^{m}(x)=w_{1}+\ldots+w_{k-1} .
$$

Since $K_{\lambda_{i}}^{\prime} \subseteq K_{\lambda_{i}}$ for $i<k$ and $\left(T-\lambda_{k} I\right)^{m}$ maps $k_{\lambda_{i}}$ onto itself for $i<k$, there exist vectors $v_{i} \in K_{\lambda}$; st.
$\left(T-\lambda_{k} I\right)^{m}\left(v_{i}\right)=w$; for $i<k$. Thus:
$\left(T-\lambda_{k} I\right)^{m}(x)=\left(T-\lambda_{k} I\right)^{m}\left(v_{1}\right)+\ldots+\left(T-\lambda_{k} I\right)^{m}\left(v_{k-1}\right)$.
By linearity $\Rightarrow\left(T-\lambda_{k} I\right)^{m}\left(x-\left(v_{1}+\ldots+v_{k-1}\right)\right)=0 \quad \Leftrightarrow v_{k}=x-\left(v_{1}+\ldots+v_{k-1}\right) \in K_{\lambda_{k}}$.
Thus $x=v_{1}+\cdots+v_{k}$ and $v_{i} \in k_{\lambda_{i}}$ for all $1 \leq i \leq k$.
Now we can general ize Thu 5.9 prom diagz. operators to all operators with splitting char. poly, replacing e.spares by gen.e.spaces.

Thu 7.4. Let $T \in L(V), \operatorname{dim}(V)<\infty$ and char. poly. of T splits.
Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct e.val's of T, with corresp. multiplicities m_{1}, \ldots, m_{k}.
For $1 \leq i \leq k$, let β_{i} be an ordered basis for $K_{\lambda_{i}}$. Then:
a) $\beta_{i} \cap \beta_{j}=\varnothing$ for $i \neq j$.
b) $\beta=\beta_{1} v \ldots v \beta_{k}$ is an ordered basis for V.
c) $\operatorname{dim}\left(k_{\lambda_{i}}\right)=m_{i}$ for all i.

Proof.
a) Supp. $x \in \beta_{i} \cap \beta_{j} \subseteq k_{\lambda_{i}} \cap k_{\lambda_{j}}$ for $i \neq j$. In particular $x \neq 0$.

By Thu $7.1(b), T-\lambda_{i} I$ is one-to - one on $K_{\lambda_{j}}$, therefore
$\left(T-\lambda_{i} I\right)^{p}(x) \neq 0$ for any $p \in \mathbb{N}_{20}$. (as $x \notin N\left(T-\lambda_{i} I\right)$).
But this contradicts $x \in K_{\lambda_{i}}$!
b) Let $x \in V$. By Thu 7.3 , for $1 \leq i \leq k$ there exist $v_{i} \in K_{\lambda_{i}}$ s.t.

$$
x=v_{1}+\ldots+v_{k} .
$$

As each v_{i} is a lin. comb. of vectors in $\beta ; \Rightarrow x$ is a lin. comb. of vectors in $\beta . \Rightarrow V=\operatorname{Span}(\beta)$.
Let $q=|\beta|$. Then $\operatorname{dim}(v) \leq q$.
For each i, let $d_{i}=\operatorname{dim}\left(k_{\lambda_{i}}\right)$. By Tho 7.2(a):
$q=\sum_{i=1}^{k} d_{i} \leq \sum_{i=1}^{k} m_{j}=\operatorname{dim}(V)$. Hence $q=\operatorname{dim}(V)$, so β is a basis for V.
(c) By (b) we have $\sum_{i=1}^{k} d_{i}=\sum_{i=1}^{k} m_{i}$.

Color Let $T \notin L(V), \operatorname{dim}(V)<\infty$ and char. polly. of T splits.
Then T is diagz $\Leftrightarrow E_{\lambda}=K_{\lambda}$ for every e.val. λ of T.
Proof $T \operatorname{mon} 7.4$ and 5.9, T is diayz $\Leftrightarrow \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(K_{\lambda}\right)$ for each e.val. 1 of T.
By $\operatorname{Thm} 7.4$ and $5.9, T$ is $\operatorname{diayz} \Leftrightarrow \operatorname{dim}\left(E_{\lambda}\right)$
$\operatorname{But} E_{\lambda} \leq K_{\lambda}, 20 E_{\lambda}=K_{\lambda} \Leftrightarrow \operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(K_{\lambda}\right)$.
Our next aim is to develop a general method for finding a Jordan canonical Basis for an aerator. In view of Thu 7.4, we should first learn to select suitable lases for gen. e.spares.
(Dy. Let $T \in L(V)$, let x be a gen. e. rect. of T corresp. to the e.val. λ.
supp. that $p \in \mathbb{N}_{>0}$ is the smallest sit. $(T-\lambda I)^{p}(x)=0$. Then the ordered set $\left\{(T-\lambda I)^{p-1}(x),(T-\lambda I)^{p-2}(x), \ldots,(T-\lambda I)(x), x\right\}$
is called a cycle of generalized e.vect's of T corresponding to λ.
The rectors $(T-\lambda I)^{p-1}(x)$ and x are called the initial vector and the end rector of the cycle, respectively. The length of the cycle is p.
(Rem 1) The initial vector is the only e.vect. of T in the cycle.
2) If x is an e.vect. of T corresp. to 1 , then the set $\{x\}$ is a cycle of gen. e.vect's of T corresp. to λ of length 1 .
Thu 7.5 Let $T \in L(V), \operatorname{dim}(V)<\infty$ and the char. poly. of T splits.
Supp. β is a basis for V s.t. β is a disjoint union of cedes of gen. e. rect.'s of T. Then:
a) For each yale γ of gen. e.vect's contained in $\beta, W=\operatorname{span}(\gamma)$ is T-inv, and $\left[T_{w}\right]_{\gamma}$ is
a Jordan block.
b) β is a Jordan canonical basis for V.

Proof supp. that γ corresponds to λ, γ has length p, and x is the end vector of γ.
Then $\gamma=\left\{v_{1}, \ldots, v_{p}\right\}$, where
$v_{i}=(T-\lambda I)^{\rho-i}(x)$ for $i<\rho$ and $v_{p}=x$.
So $\quad(T-\lambda I)\left(v_{1}\right)=(T-\lambda I)^{p}(x)=0$,
hence $T\left(v_{1}\right)=\lambda v_{1}$. For $i>1$,
$(T-\lambda I)\left(v_{i}\right)=(T-\lambda I)^{p-(i-1)}(x)=v_{i-1}$, so $\overbrace{T\left(v_{i}\right)=v_{i-1}+\lambda v_{i}} \in W$.
Therefore T maps W into itself, and by $(*) \quad\left[T_{w}\right]_{j}=\left(\begin{array}{cccc}x & 1 & & 0 \\ \lambda & & \\ & \ddots & \ddots & 1 \\ 0 & & 1 \\ & \text { b) Repenting the argument of (a) for each ache in } \beta\end{array}\right)$ is Jordan block. (see H/W9).
In view of this result, we must show that under appropriate conditions there exist lases that are disjoint unions of cycles of gen. e.vectis.
Since the char. poly. of a Jordan caumuical form splits (H/W9), this is a necessary condition.
Our aim is to show that it is also sufficient.
But we need some preparatory results first.

Thu 7.6. Let $T \in L(V)$, let λ be an e.val. of T.
Supp. $\gamma_{1}, \ldots, \gamma_{q}$ are cycles of gen. e.vect.'s of T corresp. to λ s.t. The initial vectors of the γ_{i} 's are distinct and form a lin. indep. set.
Then the γ_{i} 's are disjoint, and $\gamma=\bigcup_{i=1}^{q} \gamma_{i}$ is lin. indep.
Proof
γ_{i} 's are disjoint - see $H / W g$.
γ is lin. indef.
By induction on the number of vectors in γ.
If $|\gamma|<2$-dear.
Supp. $|\gamma|=n \geqslant 2$, and the result holds whenever $|\gamma|<n$
Let $W=\operatorname{span}(\gamma)$.
Then W is $(T-\lambda I)-\operatorname{inv}$ (by def. of cycle), and $\operatorname{dim}(W) \leq n$.
Let $U=(T-\lambda I)_{W}$.
For each i, let γ_{i}^{\prime} be the yale obtained prom $\gamma_{;}$by deleting the end vector.
If $\left|\gamma_{i}\right|=1$, then $\gamma_{i}^{\prime}=\phi$.
If $\gamma_{i}^{\prime} \neq \phi$, then each vector of γ_{i}^{\prime} is the image under U of a vector in γ_{i}, $\}(*)$
Conversely, every nou-zero image under U of a vector of γ_{i} is contained in γ_{i}^{\prime}. $\}^{(*)}$
Let $\gamma^{\prime}=\bigcup_{i} \gamma_{i}^{\prime}$. Then by $(*) \gamma^{\prime}$ generates $R(U)$.
Also $\left|\gamma^{\prime}\right|=n-q$, and the initial rector of γ_{i}^{\prime} is the initial vector of γ_{i}, for all i.
Thus, by induction hypothesis, γ^{\prime} is lin.indep.
So γ^{\prime} is a basis for $R(u)$, hence $\operatorname{dim}(R(u))=n-q$.
Since the g initial vectors of the $\gamma ; 1$'s form a lin. indep. set (by assumption) and lie in $N(U)$,
we have $\operatorname{dim}(N(U)) \geqslant q$.
Combining and wing the rank-nullity tho:
$n \geqslant \operatorname{dim}(W)=\operatorname{dim}(R(u))+\operatorname{dim}(N(U)) \geqslant(n-q)+q=n$.
So $\operatorname{dim}(W)=n$.
As $W=\operatorname{Span}(\gamma)$ and $|\gamma|=n$, it follows that γ is a fasis for W, heme lin. indep.
Cor Every cycle of gen. e. vect.'s of a lin. op. is lin. in dep.
(os the initial vector $\neq 0$).
Tum 7.7 Let $T \in h(V), \operatorname{dim}(V)<\infty$ and λ an e.val. of T.
Then K_{λ} has an ordered basis consisting of a union of disjoint cycles of gen. e. vect.'s crrresp. to λ.
Proof. induction on $n=\operatorname{dim}\left(k_{\lambda}\right)$.
$n=1$ - dear.
Assume $\operatorname{dim}\left(K_{\lambda}\right)=n>1$, and the result is valid whenever $\operatorname{dim}\left(K_{\lambda}\right)<n$.
Let $u=(T-\lambda I)_{k_{\lambda}}$.
Then $R(u)$ is a subspace of k_{λ} and $R(U) \neq k_{\lambda} \quad$ (Why? Assume $R(U)=k_{\lambda}$, and
take any $x_{0} \neq 0$ in k_{λ}. Then $\exists x_{1}, x_{2}, \ldots$ in k_{1} s.t. $x_{0}=U\left(x_{1}\right)=U^{2}\left(x_{2}\right)=\ldots$
and $x_{i} \neq 0$ by linearity of U, so $x_{m+1} \notin N\left(U^{m}\right)$, where $m=$ multiplicity of λ

- contradicting Thm,7.2.)

So $\operatorname{dim}(R(u))^{\circ}<\operatorname{dim}\left(k_{\lambda}\right)=n$.
And $R(U)$ is the space of gen e vectis corresp. to λ for the restriction of T to $R(U)$.
Then by induction hypothesis: \exists dis joint uncles $\gamma_{1}, \ldots, \gamma_{q}$ of gen. e.vect's of this restriction, and hence of T itsett, corresp. To λ fer which
$\gamma=\sum_{i=1}^{Q} \gamma_{i}$ is a basis for $R(u)$.

For $1 \leq i \leqslant q$, the end vector of γ_{i} is the image under U of a vector $v_{i} \in K_{i}$, so we con extend each γ_{i} to a larger cycle $\tilde{\gamma}_{i}=\gamma_{i} \cup\left\{v_{i}\right\}$ of gen. e.vect.'s of T corresp. to λ.
For $1 \leq i \leq q$, let w_{i} be the initial vect. of $\tilde{\gamma}_{i}$ (and hence of σ_{i} as well).
Since $\left\{w_{1}, \ldots, w_{q}\right\}$ is a lin.indep. subset of E_{λ} (See Remark apter the dep. of cycles), this set can be extended to a basis $\left\{w_{1}, \ldots, w_{q}, u_{1}, \ldots, u_{s}\right\}$ for E_{λ}.
Then $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{g},\{u\},, \ldots,\left\{u_{s}\right\}$ are dis joint cycles of gen. e.vect.'s of T corresp. A, λ, s.t. their initial vectors are lin. index.

Heme $\tilde{\gamma}=\tilde{\gamma}_{1} \cup \ldots v \tilde{\gamma}_{q} v\left\{u_{1}\right\} \cup \ldots v\left\{u_{s}\right\}$ is a lin-indep. Subset of k_{λ} by Tho 7.6.
We show that $\tilde{\gamma}$ is a basis for K_{λ}.
Supp. γ consists of $r=\operatorname{rank}(U)$ vectors. by der.
Then $\tilde{\gamma}$ consists of $r+q+s$ vectors
As $\left\{w_{1}, \ldots, w_{q}, u_{1}, \ldots, u_{s}\right\}$ is a has is for $E_{\lambda}=N(U)$, it follows that nullity $(U)=q+s$. So $\operatorname{dim}\left(k_{\lambda}\right)=\operatorname{rank}(U)+$ nullity $(U)=r+q+s$.
$\Sigma_{0} \tilde{\gamma}$ is a lin indep. subset of K_{λ} with $|\tilde{\gamma}|=K_{\lambda} \Rightarrow \tilde{\gamma}$ is a basis for K_{λ}.
We are ready to obtain the promised result.
Cor 1 Let $T \in L(V), \operatorname{dim}(V)<\infty$ and char. poly. of T splits.
Then T has a Jordan canonical form.
Proof.
Let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct e.val.'s of T.
By Tho 7.7, for each ; There is an ordered basis β; consisting of a disjoint union of cycles of gen. e.vect's of T corresp. fo λ_{i}.
Let $\beta=\beta, v \ldots \vee \beta k$.
By Thu $7.4(b), \beta$ is an ordered basis for V.
And by Thu $7.5(b) \beta$ is a Jordan canonical las is for V.
We have an analog of this result for matrices.
Def Let $A \in M_{n \times n}(F)$ be s.t. The char. poly. of A (and heme of L_{A}) splits. Then the Jordan canonical form of A is defined to be the Jordan canonical form of L_{A}.
We have immediately from cor 1:
Cor 2 Let $A \in M_{n \times n}(F)$ hove a splitting char. poly. Then A has a Jordan canonical form J, and A is similar to $T_{\text {. }}$

