MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 1 DUE FRIDAY, APRIL 12

Problem 1. Let f be one of the following functions on a vector space V, determine (with demonstration) if it is a linear functional.

- (1) $V = P(\mathbb{R}), f(p(x)) = 2p'(0) + p''(1)$, where ' denotes differentiation.
- (2) $V = \mathbb{R}^2$, f(x, y) = (2x, 4y).
- (3) $V = M_{2 \times 2}(F), f(A) = \operatorname{tr}(A).$
- (4) $V = P(\mathbb{R}), f(p(x)) = \int_0^1 p(t) dt.$ (5) $V = \mathbb{R}^3, f(x, y, z) = x^2 + y^2 + z^2.$

Problem 2. For each of the following vector spaces V and ordered bases β , find explicit formulas for vectors of the dual basis β^* for V^* .

- (1) $V = \mathbb{R}^3$, $\beta = \{(1,0,1), (1,2,1), (0,0,1)\}.$
- (2) $V = P_2(\mathbb{R}), \beta = \{1, x, x^2\}.$

Problem 3. Let $V = \mathbb{R}^3$, and define $f_1, f_2, f_3 \in V^*$ as follows:

- $f_1(x, y, z) = x 2y$, $f_2(x, y, z) = x + y + z$, $f_3(x, y, z) = y 3z$.

Prove that $\{f_1, f_2, f_3\}$ is a basis for V^* , and then find a basis for V for which it is the dual basis.

Problem 4. Define $f \in (\mathbb{R}^2)^*$ by f(x, y) = 2x + y and $T : \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = 2x + y(3x+2y,x).

- (1) Compute $T^{t}(f)$.
- (2) Compute $[T^t]_{\beta^*}$, where β is the standard ordered basis for \mathbb{R}^2 and $\beta^* =$ $\{f_1, f_2\}$ is the dual basis, by finding scalars a, b, c and d such that $T^t(f_1) =$ $af_1 + cf_2$ and $T^t(f_2) = bf_1 + df_2$. (3) Compute $[T]_{\beta}$ and $([T]_{\beta})^t$, and compare your results with (2).

Problem 5. Prove that a function $T: F^n \to F^m$ is linear if and only if there exist $f_1, f_2, \ldots, f_m \in (F^n)^*$ such that $T(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ for all $x \in F^n$.

(Hint: if T is linear, define $f_i(x) = (g_i T)(x)$ for $x \in F^n$; that is, $f_i = T^t(g_i)$ for $1 \leq i \leq m$, where $\{g_1, g_2, \ldots, g_m\}$ is the dual basis of the standard ordered basis for F^m .)

Problem 6. Let V be a finite-dimensional vector space over F. For every subset S of V, define the annihilator S^0 of S as

$$S^{0} = \{ f \in V^{*} : f(x) = 0 \text{ for all } x \in S \}.$$

- (1) Prove that S^0 is a subspace of V^* .
- (2) If W is a subspace of V and $x \notin W$, prove that there exists $f \in W^0$ such that $f(x) \neq 0$.

MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 1 DUE FRIDAY, APRIL 122

- (3) Prove that $(S^0)^0 = \text{Span}(\psi(S))$, where ψ is defined as in Theorem 2.26. (4) For subspaces W_1 and W_2 of V, prove that $W_1 = W_2$ if and only if $W_1^0 =$ W_{2}^{0} .
- (5) For subspaces W_1 and W_2 , prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.

Problem 7. Prove that if W is a subspace of V, then $\dim(W) + \dim(W^0) =$ $\dim(V).$

(Hint: extend an ordered basis $\{x_1, \ldots, x_k\}$ of W to an ordered basis β = $\{x_1, \ldots, x_k, \ldots, x_n\}$ of V. Let $\beta^* = \{f_1, \ldots, f_n\}$. Prove that $\{f_{k+1}, f_{k+2}, \ldots, f_n\}$ is a basis for W^0 .)

Problem 8. Suppose that W is a finite-dimensional vector space and $T: V \to W$ is a linear transformation. Prove that $N(T^t) = (R(T))^0$.