MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 1
 DUE FRIDAY, APRIL 12

Problem 1. Let f be one of the following functions on a vector space V, determine (with demonstration) if it is a linear functional.
(1) $V=P(\mathbb{R}), f(p(x))=2 p^{\prime}(0)+p^{\prime \prime}(1)$, where ${ }^{\prime}$ denotes differentiation.
(2) $V=\mathbb{R}^{2}, f(x, y)=(2 x, 4 y)$.
(3) $V=M_{2 \times 2}(F), f(A)=\operatorname{tr}(A)$.
(4) $V=P(\mathbb{R}), f(p(x))=\int_{0}^{1} p(t) d t$.
(5) $V=\mathbb{R}^{3}, f(x, y, z)=x^{2}+y^{2}+z^{2}$.

Problem 2. For each of the following vector spaces V and ordered bases β, find explicit formulas for vectors of the dual basis β^{*} for V^{*}.
(1) $V=\mathbb{R}^{3}, \beta=\{(1,0,1),(1,2,1),(0,0,1)\}$.
(2) $V=P_{2}(\mathbb{R}), \beta=\left\{1, x, x^{2}\right\}$.

Problem 3. Let $V=\mathbb{R}^{3}$, and define $f_{1}, f_{2}, f_{3} \in V^{*}$ as follows:

- $f_{1}(x, y, z)=x-2 y$,
- $f_{2}(x, y, z)=x+y+z$,
- $f_{3}(x, y, z)=y-3 z$.

Prove that $\left\{f_{1}, f_{2}, f_{3}\right\}$ is a basis for V^{*}, and then find a basis for V for which it is the dual basis.

Problem 4. Define $f \in\left(\mathbb{R}^{2}\right)^{*}$ by $f(x, y)=2 x+y$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=$ $(3 x+2 y, x)$.
(1) Compute $T^{t}(f)$.
(2) Compute $\left[T^{t}\right]_{\beta^{*}}$, where β is the standard ordered basis for \mathbb{R}^{2} and $\beta^{*}=$ $\left\{f_{1}, f_{2}\right\}$ is the dual basis, by finding scalars a, b, c and d such that $T^{t}\left(f_{1}\right)=$ $a f_{1}+c f_{2}$ and $T^{t}\left(f_{2}\right)=b f_{1}+d f_{2}$.
(3) Compute $[T]_{\beta}$ and $\left([T]_{\beta}\right)^{t}$, and compare your results with (2).

Problem 5. Prove that a function $T: F^{n} \rightarrow F^{m}$ is linear if and only if there exist $f_{1}, f_{2}, \ldots, f_{m} \in\left(F^{n}\right)^{*}$ such that $T(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right)$ for all $x \in F^{n}$.
(Hint: if T is linear, define $f_{i}(x)=\left(g_{i} T\right)(x)$ for $x \in F^{n}$; that is, $f_{i}=T^{t}\left(g_{i}\right)$ for $1 \leq i \leq m$, where $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ is the dual basis of the standard ordered basis for F^{m}.)

Problem 6. Let V be a finite-dimensional vector space over F. For every subset S of V, define the annihilator S^{0} of S as

$$
S^{0}=\left\{f \in V^{*}: f(x)=0 \text { for all } x \in S\right\} .
$$

(1) Prove that S^{0} is a subspace of V^{*}.
(2) If W is a subspace of V and $x \notin W$, prove that there exists $f \in W^{0}$ such that $f(x) \neq 0$.
(3) Prove that $\left(S^{0}\right)^{0}=\operatorname{Span}(\psi(S))$, where ψ is defined as in Theorem 2.26.
(4) For subspaces W_{1} and W_{2} of V, prove that $W_{1}=W_{2}$ if and only if $W_{1}^{0}=$ W_{2}^{0}.
(5) For subspaces W_{1} and W_{2}, prove that $\left(W_{1}+W_{2}\right)^{0}=W_{1}^{0} \cap W_{2}^{0}$.

Problem 7. Prove that if W is a subspace of V, then $\operatorname{dim}(W)+\operatorname{dim}\left(W^{0}\right)=$ $\operatorname{dim}(V)$.
(Hint: extend an ordered basis $\left\{x_{1}, \ldots, x_{k}\right\}$ of W to an ordered basis $\beta=$ $\left\{x_{1}, \ldots, x_{k}, \ldots, x_{n}\right\}$ of V. Let $\beta^{*}=\left\{f_{1}, \ldots, f_{n}\right\}$. Prove that $\left\{f_{k+1}, f_{k+2}, \ldots, f_{n}\right\}$ is a basis for W^{0}.)
Problem 8. Suppose that W is a finite-dimensional vector space and $T: V \rightarrow W$ is a linear transformation. Prove that $N\left(T^{t}\right)=(R(T))^{0}$.

