MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 2
 DUE FRIDAY, APRIL 19

Problem 1. For each of the following linear operators T on the vector space V, determine whether the given subspace W is a T-invariant subspace of V.
(1) $V=P_{3}(\mathbb{R}), T(f(x))=f^{\prime}(x), W=P_{2}(\mathbb{R})$.
(2) $V=P(\mathbb{R}), T(f(x))=x f(x), W=P_{2}(\mathbb{R})$.
(3) $V=\mathbb{R}^{3}, T(a, b, c)=(a+b+c, a+b+c, a+b+c)$, and $W=\{(t, t, t): t \in \mathbb{R}\}$.
(4) $V=C([0,1]), T(f(t))=\left[\int_{0}^{1} f(x) d x\right] \cdot t, W=\{f \in V: f(t)=a t+b$ for some $a, b \in \mathbb{R}\}$.
(5) $V=M_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) A, W=\left\{A \in V: A^{t}=A\right\}$.

Problem 2. For each linear operator T on the vector space V find an ordered basis for the T-cyclic subspace generated by the vector z.
(1) $V=\mathbb{R}^{4}, T(a, b, c, d)=(a+b, b-c, a+c, a+d), z=e_{1}$.
(2) $V=P_{3}(\mathbb{R}), T(f(x))=f^{\prime \prime}(x), z=x^{2}$.
(3) $V=M_{2 \times 2}(\mathbb{R}), T(A)=A^{t}, z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
(4) $V=M_{2 \times 2}(\mathbb{R}), T(A)=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) A, z=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Problem 3. For each linear operator T and cyclic subspace W in Problem 2 compute the characteristic polynomial of T_{W}.

Problem 4. Let V and W be non-zero finite dimensional vector spaces over the same field F, and let $T: V \rightarrow W$ be a linear transformation.
(1) Prove that T is onto if and only if T^{t} is one-to-one.
(2) Prove that T^{t} is onto if and only if T is one-to-one.

Problem 5. Let A denote the $k \times k$ matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 0 & -a_{k-2} \\
0 & 0 & \ldots & 1 & -a_{k-1}
\end{array}\right)
$$

with a_{0}, \ldots, a_{k-1} arbitrary scalars in F. Prove that the characteristic polynomial of A is

$$
(-1)^{k}\left(a_{0}+a_{1} t+\ldots+a_{k-1} t^{k-1}+t^{k}\right)
$$

(Hint: use induction on k, expanding the determinant along the first row.)

Problem 6. Let T be a linear operator on a finite-dimensional vector space V.
(1) Prove that if the characteristic polynomial of T splits, then so does the characteristic polynomial of the restriction of T to any T-invariant subspace of V.
(2) Deduce that if the characteristic polynomial of T splits, then any non-trivial T-invariant subspace of V contains an eigenvector of T.

Problem 7.

(1) Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_{1}+v_{2} \ldots+v_{k}$ is in W, then $v_{i} \in W$ for all i. (Hint: use induction on k.)
(2) Suppose that $\operatorname{dim}(V)=n$ and T has n distinct eigenvalues. Prove that V is a T-cyclic subspace of itself.
(Hint: use (1) to find a vector v such that $\left\{v, T(v), \ldots, T^{n-1}(v)\right\}$ is linearly independent.)

Problem 8. Prove that the restriction of a diagonalizable linear operator T to any non-trivial T-invariant subspace is also diagonalizable.
(Hint: use Problem 7(1).)

