MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 3 DUE FRIDAY, APRIL 26

Problem 1. Let T be a linear operator on V, dim $(V) < \infty$.

- (1) Let W be a T-invariant subspace of V. Prove that W is g(T)-invariant for any polynomial g(t).
- (2) Let $v \in V$ be a non-zero vector, and let W be the T-cyclic subspace of V generated by v. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial g(t) such that w = g(T)(v).
- (3) Prove that the polynomial g(t) in (2) can always be chosen so that its degree is less than or equal to dim (W).

Problem 2. Let A be an $n \times n$ matrix. Prove that dim $\{\text{Span}(\{I_n, A, A^2, \ldots\})\} \leq n$.

Problem 3. Let V be a finite-dimensional vector space with a basis β , and let β_1, \ldots, β_k be a partition of β (that is, β_1, \ldots, β_k are subsets of β such that $\beta = \beta_1 \cup \ldots \cup \beta_k$ and $\beta_i \cap \beta_j = \emptyset$ if $i \neq j$). Prove that

$$V = \operatorname{Span} (\beta_1) \oplus \ldots \oplus \operatorname{Span} (\beta_k).$$

Problem 4. Prove Theorem 5.25:

Let T be a linear operator on a finite-dimensional vector space V, and let W_1, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 + \ldots + W_k$. For each i, let β_i be an ordered basis for W_i , and let $\beta = \beta_1 \cup \ldots \cup \beta_k$. Let $A = [T]_\beta$ and $B_i = [T_{W_i}]_{\beta_i}$ for $i = 1, \ldots, k$. Then $A = B_1 \oplus \ldots \oplus B_k$.

(Hint: by induction on k, starting with k = 2 as in the proof of Theorem 5.24.)

Problem 5. Let T be a linear operator on a finite-dimensional vector space V. Prove that T is diagonalizable if and only if V is the direct sum of *one-dimensional* T-invariant subspaces.

Problem 6. Let T be a linear operator on a finite-dimensional vector space V, let W_1, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus \ldots \oplus W_k$. Prove that

$$\det (T) = \det (T_{W_1}) \cdot \ldots \cdot \det (T_{W_k}).$$

Problem 7. Let T be a linear operator on a finite-dimensional vector space V, let W_1, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus \ldots \oplus W_k$. Prove that T is diagonalizable if and only if T_{W_i} is diagonalizable for all $i, 1 \le i \le k$.

Problem 8. Let $n \in \mathbb{N}$ and let

$$A = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & & \vdots \\ n^2 - n+1 & n^2 - n+2 & \cdots & n^2 \end{pmatrix}.$$

Find the characteristic polynomial of A.

(Hint: first show that A has rank 2 and that $\text{Span}(\{(1,1,\ldots,1),(1,2,\ldots,n)\})$ is L_A -invariant).