MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 3
 DUE FRIDAY, APRIL 26

Problem 1. Let T be a linear operator on $V, \operatorname{dim}(V)<\infty$.
(1) Let W be a T-invariant subspace of V. Prove that W is $g(T)$-invariant for any polynomial $g(t)$.
(2) Let $v \in V$ be a non-zero vector, and let W be the T-cyclic subspace of V generated by v. For any $w \in V$, prove that $w \in W$ if and only if there exists a polynomial $g(t)$ such that $w=g(T)(v)$.
(3) Prove that the polynomial $g(t)$ in (2) can always be chosen so that its degree is less than or equal to $\operatorname{dim}(W)$.

Problem 2. Let A be an $n \times n$ matrix. Prove that $\operatorname{dim}\left\{\operatorname{Span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right\} \leq$ n.

Problem 3. Let V be a finite-dimensional vector space with a basis β, and let $\beta_{1}, \ldots, \beta_{k}$ be a partition of β (that is, $\beta_{1}, \ldots, \beta_{k}$ are subsets of β such that $\beta=$ $\beta_{1} \cup \ldots \cup \beta_{k}$ and $\beta_{i} \cap \beta_{j}=\emptyset$ if $i \neq j$). Prove that

$$
V=\operatorname{Span}\left(\beta_{1}\right) \oplus \ldots \oplus \operatorname{Span}\left(\beta_{k}\right)
$$

Problem 4. Prove Theorem 5.25:
Let T be a linear operator on a finite-dimensional vector space V, and let W_{1}, \ldots, W_{k} be T-invariant subspaces of V such that $V=W_{1}+\ldots+W_{k}$. For each i, let β_{i} be an ordered basis for W_{i}, and let $\beta=\beta_{1} \cup \ldots \cup \beta_{k}$. Let $A=[T]_{\beta}$ and $B_{i}=\left[T_{W_{i}}\right]_{\beta_{i}}$ for $i=1, \ldots, k$. Then $A=B_{1} \oplus \ldots \oplus B_{k}$.
(Hint: by induction on k, starting with $k=2$ as in the proof of Theorem 5.24.)

Problem 5. Let T be a linear operator on a finite-dimensional vector space V. Prove that T is diagonalizable if and only if V is the direct sum of one-dimensional T-invariant subspaces.

Problem 6. Let T be a linear operator on a finite-dimensional vector space V, let W_{1}, \ldots, W_{k} be T-invariant subspaces of V such that $V=W_{1} \oplus \ldots \oplus W_{k}$. Prove that

$$
\operatorname{det}(T)=\operatorname{det}\left(T_{W_{1}}\right) \cdot \ldots \cdot \operatorname{det}\left(T_{W_{k}}\right)
$$

Problem 7. Let T be a linear operator on a finite-dimensional vector space V, let W_{1}, \ldots, W_{k} be T-invariant subspaces of V such that $V=W_{1} \oplus \ldots \oplus W_{k}$. Prove that T is diagonalizable if and only if $T_{W_{i}}$ is diagonalizable for all $i, 1 \leq i \leq k$.

Problem 8. Let $n \in \mathbb{N}$ and let

$$
A=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n+1 & n+2 & \cdots & 2 n \\
\vdots & \vdots & & \vdots \\
n^{2}-n+1 & n^{2}-n+2 & \cdots & n^{2}
\end{array}\right)
$$

Find the characteristic polynomial of A.
(Hint: first show that A has rank 2 and that $\operatorname{Span}(\{(1,1, \ldots, 1),(1,2, \ldots, n)\})$ is L_{A}-invariant).

