MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 4
 DUE FRIDAY, MAY 3

Problem 1. For each of the following inner product spaces V and linear operators T on V, evaluate T^{*} at the given vector in V.
(1) $V=\mathbb{R}^{2}, T(a, b)=(2 a+b, a-3 b)$ and $x=(3,5)$.
(2) $V=\mathbb{C}^{2}, T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right)$ and $x=(3-i, 1+2 i)$.
(3) $V=P_{1}(\mathbb{R})$ with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t, T(f)=f^{\prime}+3 f$, $f(t)=4-2 t$.

Problem 2. Let T be a linear operator on an inner product space V.
(1) Let $U_{1}=T+T^{*}$ and $U_{2}=T T^{*}$. Prove that $U_{1}=U_{1}^{*}$ and $U_{2}=U_{2}^{*}$.
(2) Prove that $T^{*} T=T_{0}$ implies $T=T_{0}$. Is the same result true if we assume that $T T^{*}=T_{0}$?

Problem 3. Give an example of a linear operator T on an inner product space V such that $N(T) \neq N\left(T^{*}\right)$.

Problem 4. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove that if T is invertible, then T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.

Problem 5. Let V be a finite-dimensional vector space.
Definition. If $V=W_{1} \oplus W_{2}$, then a linear operator T on V is the projection on W_{1} along W_{2} if, whenever $x=x_{1}+x_{2}$ with $x_{1} \in W_{1}$ and $x_{2} \in W_{2}$, then we have $T(x)=x_{1}$.
(1) Show that $R(T)=W_{1}$ and $N(T)=W_{2}$.

Hence $V=R(T) \oplus N(T)$. We will say that T is a projection if this equality holds (in which case it is a projection on $R(T)$ along $N(T)$).
(2) Prove that $T \in \mathcal{L}(V)$ is a projection if and only if $T=T^{2}$.

Problem 6. Let V be a finite dimensional inner product space, and let W be a subspace.
(1) Prove that $V=W \oplus W^{\perp}$.
(2) Show that if T is a projection on W along W^{\perp}, then $T=T^{*}$.

Problem 7. Let T be a linear operator on an inner product space V. Prove that $\|T(x)\|=\|x\|$ for all $x \in V$ if and only if $\langle T(x), T(y)\rangle=\langle x, y\rangle$ for all $x, y \in V$.

Problem 8. Let V be a finite-dimensional inner product space, and let T be a linear operator on V. Prove the following results.
(1) $R\left(T^{*}\right)^{\perp}=N(T)$ and $R\left(T^{*}\right)=N(T)^{\perp}$.
(2) $N\left(T^{*} T\right)=N(T)$, and deduce from it that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(3) $\operatorname{rank}(T)=\operatorname{rank}\left(T^{*}\right)$, and deduce from (2) that $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}(T)$.
(4) For any $n \times n$ matrix $A, \operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}(A)$.

