MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 5
 DUE FRIDAY, MAY 10

Problem 1. For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither.
(1) $V=\mathbb{R}^{2}$ and T is defined by $T(a, b)=(2 a-2 b,-2 a+5 b)$.
(2) $V=\mathbb{C}^{2}$ and T is defined by $T(a, b)=(2 a+i b, a+2 b)$.
(3) $V=P_{2}(\mathbb{R})$ and T is defined by $T(f)=f^{\prime}$, where

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

(4) $V=M_{2 \times 2}(\mathbb{R})$ and T is defined by $T(A)=A^{t}$.

Problem 2. Let T and U be self-adjoint operators on an inner product space V. Prove that $T U$ is self-adjoint if and only if $T U=U T$.

Problem 3. Let V be a complex inner product space, and let T be a linear operator on V. Define

$$
T_{1}=\frac{1}{2}\left(T+T^{*}\right) \text { and } T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)
$$

(1) Prove that T_{1} and T_{2} are self-adjoint and that $T=T_{1}+i T_{2}$.
(2) Suppose also that $T=U_{1}+i U_{2}$, where U_{1} and U_{2} are self-adjoint. Prove that $U_{1}=T_{1}$ and $U_{2}=T_{2}$.
(3) Prove that T is normal if and only if $T_{1} T_{2}=T_{2} T_{1}$.

Problem 4. Let T be a linear operator on an inner product space V, and let W be a T-invariant subspace of V. Prove the following results.
(1) If T is self-adjoint, then T_{W} is self-adjoint.
(2) W^{\perp} is T^{*}-invariant.
(3) If W is both T - and T^{*}-invariant, then $\left(T_{W}\right)^{*}=\left(T^{*}\right)_{W}$.
(4) If W is both T - and T^{*}-invariant and T is normal, then T_{W} is normal.

Problem 5. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. Prove that if W is T-invariant, then W is also T^{*}-invariant.

Problem 6. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T)=N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.
Problem 7. Assume that T is a linear operator on a complex finite-dimensional inner product space V with an adjoint T^{*}. Prove the following results.
(1) If T is self-adjoint, then $\langle T(x), x\rangle$ is real for all $x \in V$.
(2) If T satisfies $\langle T(x), x\rangle=0$ for all $x \in V$, then $T=T_{0}$.
(Hint: replace x by $x+y$ and then by $x+i y$, and expand the resulting inner products.)
(3) If $\langle T(x), x\rangle$ is real for all $x \in V$, then $T=T^{*}$.

Problem 8. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Conclude that T is self-adjoint.

