Problem 1. Prove Corollary 2 to theorem 6.18.
That is, prove that if T is a linear operator on a finite-dimensional complex inner product space V, then: V has an orthonormal basis of eigenvectors of T with corresponding eigenvalues of absolute value 1 if and only if T is unitary.

Problem 2. Recall: a matrix $A \in M_{n \times n}(F)$ is unitarily (orthogonally) equivalent to $B \in M_{n \times n}(F)$ if there exists a unitary (orthogonal) matrix $P \in M_{n \times n}(F)$ such that $A=P^{*} B P$. Prove that this is an equivalence relation on $M_{n \times n}(F)$.
Problem 3. Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $\lambda_{1} T_{1}+\ldots+\lambda_{k} T_{k}$ of $T, \lambda_{i} \in \mathbb{C}$, to prove the following.
(1) If g is a polynomial over \mathbb{C}, then $g(T)=\sum_{i=1}^{k} g\left(\lambda_{i}\right) T_{i}$.
(2) If $T^{n}=T_{0}$ for some n, then $T=T_{0}$.
(3) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_{i}.
(4) There exists a normal operator U on V such that $U^{2}=T$.
(5) T is invertible if and only if $\lambda_{i} \neq 0$ for $1 \leq i \leq k$.
(6) T is a projection if and only if every eigenvalue of T is 1 or 0 .
(7) $T=-T^{*}$ if and only if every λ_{i} is an imaginary number.

Problem 4. Show that if T is a normal operator on a complex finite-dimensional inner product space and U is a linear operator that commutes with T, then U also commutes with T^{*}.

Problem 5. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then it is also an orthogonal projection.

Problem 6. Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional U-invariant subspace of V. Prove that:
(1) $U(W)=W$;
(2) W^{\perp} is U-invariant.

Problem 7. Prove part (c) of the spectral theorem.
Problem 8. Let V be a finite-dimensional real inner product space. Prove that rotations, reflections and compositions of rotations and reflections are orthogonal operators.

