MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 8 DUE FRIDAY, MAY 31

Problem 1. Let V be a real inner product space of dimension 2. For any $x, y \in V$ such that $x \neq y$ and ||x|| = ||y|| = 1, show that there exists a unique rotation T on V such that T(x) = y.

Problem 2. Let T be a linear operator on an n-dimensional real inner product space V. Suppose that T is not the identity. Prove the following.

- (1) If n is odd, then T can be expressed as the composite of at most one reflection and at most $\frac{1}{2}(n-1)$ rotations.
- (2) If n is even, then T can be expressed as the composite of at most $\frac{1}{2}n$ rotations or as the composite of one reflection and at most $\frac{1}{2}(n-2)$ rotations.

Problem 3. Let T be a linear operator on V and $\beta = \{v_1, \ldots, v_n\}$ is a canonical Jordan basis, i.e. $[T]_{\beta}$ is a canonical Jordan form. Show that for each $i = 1, \ldots, n$ there is some $p \in \mathbb{N}$ such that $(T - \lambda I)^p (v_i) = 0$, where λ is the diagonal entry of the matrix $[T]_{\beta}$ on the i^{th} column.

Problem 4. Let $T: V \to W$ be a linear transformation. Prove the following.

- (1) N(T) = N(-T).
- (2) $N(T^k) = N((-T)^k).$
- (3) If V = W and λ is an eigenvalue of T, then for any positive integer k

$$N\left(\left(T-\lambda I_V\right)^k\right) = N\left(\left(\lambda I_V-T\right)^k\right).$$

Problem 5. Let U be a linear operator on a finite-dimensional vector space V. Prove the following.

- (1) $N(U) \subseteq N(U^2) \subseteq \ldots \subseteq N(U^k) \subseteq N(U^{k+1}) \subseteq \ldots$
- (2) If rank $(U^m) = \operatorname{rank} (U^{m+1})$ for some positive integer m, then rank $(U^m) = \operatorname{rank} (U^k)$ for any positive integer $k \ge m$.
- (3) If rank $(U^m) = \operatorname{rank}(U^{m+1})$ for some positive integer m, then $N(U^m) = N(U^k)$ for some positive integer $k \ge m$.
- (4) Let T be a linear operator on V, and let λ be an eigenvalue of T. Prove that if rank $((T \lambda I)^m) = \operatorname{rank} ((T \lambda I)^{m+1})$ for some integer m, then $K_{\lambda} = N ((T \lambda I)^m).$
- (5) Let $T \in \mathcal{L}(V)$ have a characteristic polynomial that splits, and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then T is diagonalizable if and only if rank $(T \lambda I) = \operatorname{rank}\left((T \lambda I)^2\right)$ for $1 \le i \le k$.

Problem 6. Use Problem 5(5) to obtain a new proof of the following result from previous homework: if $T \in \mathcal{L}(V)$ is diagonalizable, dim $(V) < \infty$ and W is a T-invariant subspace of V, then T_W is diagonalizable.

MATH 115B (CHERNIKOV), SPRING 2019 PROBLEM SET 8 DUE FRIDAY, MAY 31 2

Problem 7. Use Theorem 7.4 to prove that the vectors v_1, \ldots, v_k in the statement of Theorem 7.3 are unique.