MATH 115B (CHERNIKOV), SPRING 2019
 PROBLEM SET 8
 DUE FRIDAY, MAY 31

Problem 1. Let V be a real inner product space of dimension 2. For any $x, y \in V$ such that $x \neq y$ and $\|x\|=\|y\|=1$, show that there exiss a unique rotation T on V such that $T(x)=y$.

Problem 2. Let T be a linear operator on an n-dimensional real inner product space V. Suppose that T is not the identity. Prove the following.
(1) If n is odd, then T can be expressed as the composite of at most one reflection and at most $\frac{1}{2}(n-1)$ rotations.
(2) If n is even, then T can be expressed as the composite of at most $\frac{1}{2} n$ rotations or as the composite of one reflection and at most $\frac{1}{2}(n-2)$ rotations.
Problem 3. Let T be a linear operator on V and $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a canonical Jordan basis, i.e. $[T]_{\beta}$ is a canonical Jordan form. Show that for each $i=1, \ldots, n$ there is some $p \in \mathbb{N}$ such that $(T-\lambda I)^{p}\left(v_{i}\right)=0$, where λ is the diagonal entry of the matrix $[T]_{\beta}$ on the $i^{\text {th }}$ column.

Problem 4. Let $T: V \rightarrow W$ be a linear transformation. Prove the following.
(1) $N(T)=N(-T)$.
(2) $N\left(T^{k}\right)=N\left((-T)^{k}\right)$.
(3) If $V=W$ and λ is an eigenvalue of T, then for any positive integer k

$$
N\left(\left(T-\lambda I_{V}\right)^{k}\right)=N\left(\left(\lambda I_{V}-T\right)^{k}\right)
$$

Problem 5. Let U be a linear operator on a finite-dimensional vector space V. Prove the following.
(1) $N(U) \subseteq N\left(U^{2}\right) \subseteq \ldots \subseteq N\left(U^{k}\right) \subseteq N\left(U^{k+1}\right) \subseteq \ldots$.
(2) If $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{m+1}\right)$ for some positive integer m, then $\operatorname{rank}\left(U^{m}\right)=$ rank $\left(U^{k}\right)$ for any positive integer $k \geq m$.
(3) If $\operatorname{rank}\left(U^{m}\right)=\operatorname{rank}\left(U^{m+1}\right)$ for some positive integer m, then $N\left(U^{m}\right)=$ $N\left(U^{k}\right)$ for some positive integer $k \geq m$.
(4) Let T be a linear operator on V, and let λ be an eigenvalue of T. Prove that if $\operatorname{rank}\left((T-\lambda I)^{m}\right)=\operatorname{rank}\left((T-\lambda I)^{m+1}\right)$ for some integer m, then $K_{\lambda}=N\left((T-\lambda I)^{m}\right)$.
(5) Let $T \in \mathcal{L}(V)$ have a characteristic polynomial that splits, and let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Then T is diagonalizable if and only if $\operatorname{rank}(T-\lambda I)=\operatorname{rank}\left((T-\lambda I)^{2}\right)$ for $1 \leq i \leq k$.
Problem 6. Use Problem 5(5) to obtain a new proof of the following result from previous homework: if $T \in \mathcal{L}(V)$ is diagonalizable, $\operatorname{dim}(V)<\infty$ and W is a T-invariant subspace of V, then T_{W} is diagonalizable.

Problem 7. Use Theorem 7.4 to prove that the vectors v_{1}, \ldots, v_{k} in the statement of Theorem 7.3 are unique.

