Cours fondamental 1 (M2 LMFI) "Théorie des modèles et théorie des ensembles" automne 2013

FEUILLE D'EXERCICES 4

Exercice 1.

- (1) Soit $L_s = \{s(x)\}$ où s(x) est une fonction unaire. Nous considerons la L-structure $M = (\mathbb{Z}, x \mapsto x + 1)$.
 - (a) Soit T_s telle que s est une bijection et s ne contient pas de cycles. Observer que M est une modèle de T_s .
 - (b) Montrer que T_s n'est pas \aleph_0 -catégorique, mais qu'elle est catégorique en tout cardinal non dénombrable.
 - (c) Montrer que T_s est complète et qu'elle a l'élimination des quanteurs.
- (2) Soit $L_{<} = \{<\}$. Nous considerons la L-structure $M = (\mathbb{Z}, <)$.
 - (a) Soit $L_{<}$ -théorie T_{ord} la théorie des ordres discrets sans extrémités. Montrer que T_{ord} n'a pas l'élimination des quanteurs.
 - (b) On considère le langage $L'_{<} = L_{<} \cup \{d_n(x,y) : n \in \mathbb{N}\}$ où les $d_n(x,y)$ sont des relations binaires et la théorie
 - $T'_{<} = T_{<} \cup \{ \forall x \forall y (d_n(x, y) \leftrightarrow \exists z_0 \dots \exists z_n (x < z_0 < \dots < z_n < y)) \}.$

Montrer que chaque modèle de T_s admet une extension en un modèle de $T_<$ (ou $T_<'$) et que $T_<'$ n'est catégorique en aucun cardinal.

(c) Montrer que $T'_{<}$ est une théorie complète et que $T'_{<}$ a l'élimination des quanteurs (par la méthode de va-et-vient).

Exercice 2 (\mathbb{Z} -groupes). Soit $L = \{0, 1, +, -\} \cup \{P_n, n \geq 2\}$, où les P_n sont des prédicats unaires. On associe aux entiers relatifs la L-structure $\mathcal{Z} = (\mathbb{Z}, 0, 1, +, -, (n \mathbb{Z})_{n \geq 2})$. Le but de cet exercice est de comprendre $\mathrm{Th}(\mathcal{Z})$.

On considère la L-théorie T axiomatisée par les axiomes suivants:

- des axiomes de groupes abéliens sans torsion, avec 0 l'identité;
- pour tout $n \geq 2$ l'énoncé $\forall x (P_n(x) \leftrightarrow \exists z \, nz = x);$
- pour tout $n \ge 2$ l'énoncé $\neg P_n(1)$;
- pour tout $n \ge 2$ l'énoncé $\forall x \left(\bigvee_{d=0}^{n-1} P_n(x-d) \right)$, où $d=1+\cdots+1$ (d fois).
- (1) Soit $M \models T$. Observer que pour $n \geq 2$, $1 \mapsto 1_M$ induit un isomorphisme $\mathbb{Z}/n\mathbb{Z} \cong M/nM$.
- (2) Observer: $\tilde{\mathcal{Z}}$ est modèle de T et admet un (unique) plongement dans tout modèle de T.
- (3) Pour i=1,2, soient $M_i \models T, U_i \subseteq M_i$ des sous-structures et $f:U_1 \cong U_2$ un L-isomorphisme.
 - Montrer que f s'étend en un isomorphisme $\tilde{f}: \mathrm{Div}_{M_1}(U_1) \cong \mathrm{Div}_{M_2}(U_2)$, où $\mathrm{Div}_M(U) := \{b \in M \mid \exists n \geq 2 \text{ tel que } nb \in U\}$ est la clôture divisible de U dans M.
- (4) Soit $M \models T$ et $a \in M$. Pour $n \geq 2$, on note $d_n(a)$ l'unique $d_n \in \{0, \ldots, n-1\}$ tel que $M \models P_n(a-d_n)$. Observer que la suite $(d_n(a))_{n\geq 2}$ satisfait à la condition suivante:
 - (*): Si $m \mid n$, alors $m \mid (d_n(a) d_m(a))$.

Réciproquement, on suppose donnée une suite d'entiers $(d_n)_{n\geq 2}$ avec $d_n\in\{0,\ldots,n-1\}$ et vérifiant (*). Soit $N\models T$ un modèle ω -saturé et $B=\langle b_1,\ldots,b_k\rangle\subseteq N$ une sous-structure finiment engendrée. Montrer qu'il existe $a\in N,\, a\not\in \mathrm{Div}_N(B)$, tel que $(d_n(a))_{n\geq 2}=(d_n)_{n\geq 2}$.

- (5) Montrer que T élimine les quanteurs et est une théorie complète.
- (6) Soit $L'=\{0,1,+,-\}$. Montrer que T n'élimine pas les quanteurs dans L'. (Indication: on peut trouver $G\subseteq H$ deux modèles de T et $a\in G$ tels que $H\models 2|a$ et $G\models \neg\,(2|a)$.)
- (7) Montrer que dans $(\mathbb{Z}, +, -, 0, 1)$ on ne peut pas definir l'ordre habituel dans \mathbb{Z} . (Indication: trouver un isomorphisme convenable.)

Artem Chernikov chernikov@math.jussieu.fr chernikov.me